

Welcome to xoutil’s documentation!

Collection of disparate utilities.

xoutil is essentially an extension to the Python’s standard library, it does
not turn into a full framework, but it’s very useful to be used from a
diversity of scenarios where compatibility is an important issue.

What’s new in 1.8.0

	Remove deprecated xoutil.objects.metaclass, use
xoutil.eight.meta.metaclass() instead.

	Several modules are migrated to xoutil.future:

	types.

	collections.

	datetime.

	functools.

	inspect.

	codecs.

	json.

	threading.

	subprocess.

	pprint.

	textwrap.

	Add function xoutil.deprecation.import_deprecated(),
inject_deprecated() can be deprecated now.

	Add function xoutil.deprecation.deprecate_linked() to deprecate full
modules imported from a linked version. The main example are all
sub-modules of xoutil.future.

	Add function xoutil.deprecation.deprecate_module() to deprecate full
modules when imported.

	Remove the module xoutil.string in favor of:

	xoutil.future.codecs: Moved here functions
force_encoding(),
safe_decode(), and
safe_encode().

	xoutil.eight.string: Technical string handling. In this module:

	force(): Replaces old safe_str, and
force_str versions.

	safe_join(): Replaces old version in
future module. This function is useless, it’s equivalent to:

force(vale).join(force(item) for item in iterator)

	force_ascii(): Replaces old
normalize_ascii. This function is safe and the result will be of
standard str type containing only equivalent ASCII characters from
the argument.

	xoutil.eight.text: Text handling, strings can be part of
internationalization processes. In this module:

	force(): Replaces old safe_str, and
force_str versions, but always returning the text type.

	safe_join(): Replaces old version in
future module, but in this case always return the text type. This
function is useless, it’s equivalent to:

force(vale).join(force(item) for item in iterator)

	capitalize_word function was completely removed, use instead standard
method word.capitalize().

	Functions capitalize, normalize_name, normalize_title,
normalize_str, parse_boolean, parse_url_int were completely
removed.

	normalize_unicode was completely removed, it’s now replaced by
xoutil.eight.text.force().

	hyphen_name was moved to xoutil.cli.tools.

	strfnumber was moved as an internal function of
‘xoutil.future.datetime’:mod: module.

	Function normalize_slug is now deprecated. You should use now
slugify().

	Create __small__ protocol for small string representations, see
xoutil.string.small() for more information.

	Remove xoutil.connote that was introduced provisionally in 1.7.1.

	Module xoutil.params was introduced provisionally in 1.7.1, but now
has been fully recovered.

	Add function issue_9137() – Helper to fix issue 9137
(self ambiguity).

	Add function check_count() – Checker for positional
arguments actual count against constrains.

	Add function check_default() – Default value getter
when passed as a last excess positional argument.

	Add function single() – Return true only when a
unique argument is given.

	Add function keywords_only() – Decorator to make a
function to accepts its keywords arguments as keywords-only.

	Add function pop_keyword_arg() – Tool to get a value
from keyword arguments using several possible names.

	Add class ParamManager – Parameter manager in a
“smart” way.

	Add class ParamScheme – Parameter scheme
definition for a manager.

	Add class ParamSchemeRow – Parameter scheme
complement.

	Remove xoutil.params.ParamConformer.

	Module xoutil.values was recovered adding several new features (old
name xoutil.cl was deprecated).

	Add experimental module xoutil.fp for Functional Programming
stuffs.

	Add experimental module xoutil.tasking.

	Remove deprecated module xoutil.data. Add
xoutil.objects.adapt_exception().

	Remove deprecated xoutil.dim.meta.Signature.isunit().

Contents

	xoutil – Collection of tools. Top-level imports

	xoutil.annotate - Py3k compatible annotations for Python 2

	xoutil.bases - Numeric base 32 and base 64 integer representations

	xoutil.bound – Helpers for bounded execution of co-routines

	xoutil.cli – Command line application facilities

	xoutil.clipping - Text clipping and trimming

	xoutil.context - Simple execution contexts

	xoutil.cpystack - Utilities to inspect the CPython’s stack

	xoutil.crypto - Other cryptographic services

	xoutil.decorator - Several decorators

	xoutil.deprecation - Utils for marking deprecated elements

	xoutil.dim - Facilities to work with concrete numbers

	xoutil.eight – Extensions for writing code that runs on Python 2 and 3

	xoutil.formatter - Formatting

	xoutil.fp – Functional Programming in Python

	xoutil.fs – file system utilities

	xoutil.future - Extend standard modules with “future” features

	xoutil.html – Helpers for manipulating HTML

	xoutil.infinity - An infinite value

	xoutil.iterators - Functions creating iterators for efficient looping

	xoutil.keywords – Tools for manage Python keywords as names

	xoutil.logger - Standard logger helpers

	xoutil.modules – Utilities for working with modules

	xoutil.names – Utilities for handling objects names

	xoutil.objects - Functions for dealing with objects

	xoutil.params – Tools for managing function arguments

	xoutil.progress - Console progress utils

	xoutil.records - Records definitions

	xoutil.string - Common string operations

	xoutil.symbols – Basic function argument manager

	xoutil.validators – value validators

	xoutil.values – coercers (or checkers) for value types

	xoutil.web – Utils for Web applications

	xoutil.eight.abc - Abstract Base Classes (ABCs) according to PEP 3119

	xoutil.eight.exceptions - Exceptions handling compatibility

	xoutil.eight.io - Extensions to Python’s io module

	xoutil.eight.meta - metaclass function using Python 3 syntax

	xoutil.eight.mixins - functions to create helper classes and mixins

	xoutil.eight.queue - A multi-producer, multi-consumer queue

	xoutil.eight.string - Checkers for simple types

	String Ambiguity in Python

	xoutil.eight.text - TODO

	Changelog

	How to contribute to xoutil

	List of contributors

	Copyright and Licence

Indices and tables

	Index

	Search Page

xoutil – Collection of tools. Top-level imports

	
xoutil.Unset = Unset

	False value, mainly for function parameter definitions, where None could
be a valid value.

	
xoutil.Undefined = Undefined

	False value for local scope use or where Unset could be a valid value

	
xoutil.Ignored = Ignored

	To be used in arguments that are currently ignored because they are being
deprecated. The only valid reason to use Ignored is to signal ignored
arguments in method’s/function’s signature

xoutil.annotate - Py3k compatible annotations for Python 2

Provides Python

 xoutil.bases - Numeric base 32 and base 64 integer representations

xoutil.bases - Numeric base 32 and base 64 integer representations

Integer encoding and decoding in different bases.

	
xoutil.bases.int2str(number, base=62)

	Return the string representation of an integer using a base.

	Parameters:	base (Either an integer or a string with a custom table.) – The base.

Examples:

>>> int2str(65535, 16)
'ffff'

>>> int2str(65535)
'h31'

>>> int2str(65110208921, 'merchise')
'ehimseiemsce'

>>> int2str(651102, 2)
'10011110111101011110'

	
xoutil.bases.str2int(src, base=62)

	Return the integer decoded from a string representation using a base.

	Parameters:	base (Either an integer or a string with a custom table.) – The base.

Examples:

>>> str2int('ffff', 16)
65535

>>> str2int('1c', 16) == int('1c', 16)
True

>>> base = 'merchise'
>>> number = 65110208921
>>> str2int(int2str(number, base), base) == number
False

>>> base = 32
>>> str2int(int2str(number, base), base) == number
True

	
class xoutil.bases.B32

	Handles base-32 conversions.

In base 32, each 5-bits chunks are represented by a single “digit”. Digits
comprises all symbols in 0..9 and a..v.

>>> B32.inttobase(32) == '10'
True

>>> B32.basetoint('10')
32

	
class xoutil.bases.B64

	Handles [a kind of] base 64 conversions.

This is not standard base64, but a reference-friendly base 64 to help
the use case of generating a short reference.

In base 64, each 6-bits chunks are represented by a single “digit”.
Digits comprises all symbols in 0..9, a..z, A..Z and the three symbols:
()[.

>>> B64.inttobase(64) == '10'
True

>>> B64.basetoint('10')
64

Warning

In this base, letters are case sensitive:

>>> B64.basetoint('a')
10

>>> B64.basetoint('A')
36

 xoutil.bound – Helpers for bounded execution of co-routines

xoutil.bound – Helpers for bounded execution of co-routines

New in version 1.6.3.

A bounded execution model

Some features are easy to implement using a generator or co-routine
(PEP 342 [https://www.python.org/dev/peps/pep-0342]). For instance, you might want to “report units of work” one at a
time. These kind of features could be easily programmed without any bounds
whatsoever, and then you might “weave” the bounds.

This module helps to separate the work-doing function from the boundary-tests
definitions.

This document uses the following terminology:

	unbounded function

	This is the function that does the actual work without testing for any
boundary condition. Boundary conditions are not “natural
causes” of termination for the algorithm but conditions imposed
elsewhere: the environment, resource management, etc.

This function must return a generator, called the unbounded
generator.

	unbounded generator

	The generator returned by an unbounded function. This generator
is allowed to yield forever, although it could terminate by itself. So
this is actually a possibly unbounded generator, but we keep the term
to emphasize.

	boundary condition

	It’s a condition that does not belong to the logical description of any
algorithm. When this condition is met it indicates that the unbounded
generator should be closed. The boundary condition is tested
each time the unbounded generator yields.

A boundary condition is usually implemented in a single function called
the boundary definition.

	boundary definition

	A function that implements a boundary condition. This function must
comply with the boundary protocol (see boundary()).

Sometimes we identify the boundary condition with its boundary
definition.

	bounded function

	It’s the result of applying a boundary definition to an unbounded
function.

	bounded generator

	It’s the result of applying a boundary condition to an unbounded
generator.

The bounded execution model takes at least an unbounded generator and a
boundary condition. Applying the boundary condition to the unbounded
generator ultimately results in a bounded generator, which will behave
almost equivalently to the unbounded generator but will stop when the
boundary condition yields True or when the unbounded generator itself is
exhausted.

Included boundary conditions

	
xoutil.bound.timed(maxtime)

	Becomes True after a given amount of time.

The bounded generator will be allowed to yields values until the maxtime
time frame has elapsed.

Usage:

@timed(timedelta(seconds=60))
def do_something_in_about_60s():
 while True:
 yield

Note

This is a very soft limit.

We can’t actually guarrant any enforcement of the time limit. If the
bounded generator takes too much time or never yields this predicated
can’t do much. This usually helps with batch processing that must not
exceed (by too much) a given amount of time.

The timer starts just after the next() function has been called for
the predicate initialization. So if the maxtime given is too short this
predicated might halt the execution of the bounded function without
allowing any processing at all.

If maxtime is not a timedelta, the timedelta will be computed as
timedelta(seconds=maxtime).

	
xoutil.bound.times(n)

	Becomes True after a given after the nth item have been produced.

	
xoutil.bound.accumulated(mass, *attrs, initial=0)

	Becomes True after accumulating a given “mass”.

mass is the maximum allowed to accumulate. This is usually a positive
number. Each value produced by the unbounded generator is added
together. Yield True when this amount to more than the given mass.

If any attrs are provided, they will be considered attributes (or keys)
to search inside the yielded data from the bounded function. If no
attrs are provided the whole data is accumulated, so it must allow
addition. The attribute to be summed is extracted with
get_first_of(), so only the first attribute found is
added.

If the keyword argument initial is provided the accumulator is
initialized with that value. By default this is 0.

	
xoutil.bound.pred(func, skipargs=True)

	Allow “normal” functions to engage within the boundary protocol.

func should take a single argument and return True if the boundary
condition has been met.

If skipargs is True then function func will not be called with the
tuple (args, kwargs) upon initialization of the boundary, in that case
only yielded values from the unbounded generator are passed. If you
need to get the original arguments, set skipargs to False, in this case
the first time func is called will be passed a single argument (arg,
kwargs).

Example:

>>> @pred(lambda x: x > 10)
... def fibonacci():
... a, b = 1, 1
... while True:
... yield a
... a, b = b, a + b

>>> fibonacci()
13

	
xoutil.bound.until_errors(*errors)

	Becomes True after any of errors has been raised.

Any other exceptions (except GeneratorExit) is propagated. You must pass
at least an error.

Normally this will allow some possibly long jobs to be interrupted
(SoftTimeLimitException in celery task, for instance) but leave some time
for the caller to clean up things.

It’s assumed that your job can be properly finalized after any of the
given exceptions has been raised.

	Parameters:	on_error – A callable that will only be called if the boundary
condition is ever met, i.e if any of errors was
raised. The callback is called before yielding True.

New in version 1.7.2.

Changed in version 1.7.5: Added the keyword argument on_error.

	
xoutil.bound.until(time=None, times=None, errors=None)

	An idiomatic alias to other boundary definitions.

	until(maxtime=n) is the same as timed(n).

	until(times=n) is the same as times(n).

	until(pred=func, skipargs=skip) is the same as
pred(func, skipargs=skip).

	until(errors=errors, **kwargs) is the same as
until_errors(*errors, **kwargs).

	
	until(accumulate=mass, path=path, initial=initial) is the same as

	accumulated(mass, *path.split('.'), initial=initial)

Warning

You cannot mix many calls.

New in version 1.7.2.

Chaining several boundary conditions

To created a more complex boundary than the one provided by a single condition
you could use the following high-level boundaries:

	
xoutil.bound.whenany(*boundaries)

	An OR-like boundary condition.

It takes several boundaries and returns a single one that behaves like the
logical OR, i.e, will yield True when any of its subordinate boundary
conditions yield True.

Calls close() of all subordinates upon termination.

Each boundary should be either:

	A “bare” boundary definition that takes no arguments.

	A boundary condition (i.e an instance of BoundaryCondition).
This is result of calling a boundary definition.

	A generator object that complies with the boundary protocol. This
cannot be tested upfront, a misbehaving generator will cause a
RuntimeError if a boundary protocol rule is not followed.

Any other type is a TypeError.

	
xoutil.bound.whenall(*boundaries)

	An AND-like boundary condition.

It takes several boundaries and returns a single one that behaves like the
logical AND i.e, will yield True when all of its subordinate boundary
conditions have yielded True.

It ensures that once a subordinate yields True it won’t be sent more data,
no matter if other subordinates keep on running and consuming data.

Calls close() of all subordinates upon termination.

Each boundary should be either:

	A “bare” boundary definition that takes no arguments.

	A boundary condition (i.e an instance of BoundaryCondition).
This is result of calling a boundary definition.

	A generator object that complies with the boundary protocol. This
cannot be tested upfront, a misbehaving generator will cause a
RuntimeError if a boundary protocol rule is not followed.

Any other type is a TypeError.

Defining boundaries

If none of the boundaries defined deals with a boundary condition you have,
you may create another one using boundary(). This is usually employed
as decorator on the boundary definition.

	
xoutil.bound.boundary(definition)

	Helper to define a boundary condition.

The definition must be a function that returns a generator. The
following rules must be followed. Collectively these rules are called
the boundary protocol.

	The boundary definition will yield True when and only when the
boundary condition is met. Only the value True will signal the boundary
condition.

	The boundary definition must yield at least 2 times:

	First it will be called its next() method to allow for
initialization of internal state.

	Immediately after, it will be called its send() passing the tuple
(args, kwargs) with the arguments passed to the unbounded
function. At this point the boundary definition may yield True to
halt the execution. In this case, the unbounded generator won’t be
asked for any value.

	The boundary definition must yield True before terminating with a
StopIteration. For instance the following definition is invalid cause
it ends without yielding True:

@boundary
def invalid():
 yield
 yield False

	The boundary definition must deal with GeneratorExit exceptions
properly since we call the close() method of the generator upon
termination. Termination occurs when the unbounded generator stops by
any means, even when the boundary condition yielded True or the
generator itself is exhausted or there’s an error in the generator.

Both whenall() and whenany() call the close() method of
all their subordinate boundary conditions.

Most of the time this reduces to not catching GeneratorExit
exceptions.

A RuntimeError may happen if any of these rules is not followed by the
definition. Furthermore, this error will occur when invoking the
bounded function and not when applying the boundary to the unbounded
generator.

Illustration of a boundary

Let’s explain in detail the implementation of times() as an example of
how a boundary condition could be implemented.

	1
2
3
4
5
6
7
8
9

	@boundary
def times(n):
 '''Becomes True after the `nth` item have been produced.'''
 passed = 0
 yield False
 while passed < n:
 yield False
 passed += 1
 yield True

We implemented the boundary condition via the boundary() helper. This
helpers allows to implement the boundary condition via a boundary definition
(the function above). The boundary helper takes the definition and builds
a BoundaryCondition instance. This instance can then be used to
decorate the unbounded function, returning a bounded function (a
Bounded instance).

When the bounded function is called, what actually happens is that:

	First the boundary condition is invoked passing the n argument, and thus
we obtain the generator from the times function.

	We also get the generator from the unbounded function.

	Then we call next(boundary) to allow the times boundary to
initialize itself. This runs the code of the times definition up to the
line 5 (the first yield statement).

	The bounded function ignores the message from the boundary at this point.

	Then it sends the arguments passed to original function via the send()
method of the boundary condition generator.

	This unfreezes the boundary condition that now tests whether passes is
less that n. If this is true, the boundary yields False and suspends
there at line 7.

	The bounded function see that message is not True and asks the unbounded
generator for its next value.

	Then it sends that value to the boundary condition generator, which resumes
execution at line 8. The value sent is ignored and passes gets
incremented by 1.

	Again the generator asks if passes is less that n. If passes has
reached n, it will execute line 9, yielding True.

	The bounded function see that the boundary condition is True and calls the
close() method to the boundary condition generator.

	This is like raising a GeneratorExit just after resuming the times below
line 9. The error is not trapped and propagates the close() method of
the generator knows this means the generator has properly finished.

Note

Other boundaries might need to deal with GeneratorExit explicitly.

	Then the bounded function regains control and calls the close() method
of the unbounded generator, this effectively raises a GeneratorExit inside
the unbounded generator, which if untreated means everything went well.

If you look at the implementation of the included boundary conditions,
you’ll see that all have the same pattern:

	Initialization code, followed by a yield False statement. This is a
clear indicator that the included boundary conditions disregard the first
message (the arguments to the unbounded function).

	A looping structure that tests the condition has not been met and yields
False at each cycle.

	The yield True statement outside the loop to indicate the boundary
condition has been met.

This pattern is not an accident. Exceptionally whenall() and
whenany() lack the first standalone yield False because they must not
assume all its subordinate predicates will ignore the first message.

Internal API

	
class xoutil.bound.Bounded(target)

	The bounded function.

This is the result of applying a boundary definition to an unbounded
function (or generator).

If target is a function this instance can be called several times. If
it’s a generator then it will be closed after either calling
(__call__) this instance, or consuming the generator given by
generate().

This class is actually subclassed inside the
apply() so that the weaving boundary definition
with the target unbounded function is not exposed.

	
__call__(*args, **kwargs)

	Return the last value from the underlying bounded generator.

	
generate(*args, **kwargs)

	Return the bounded generator.

This method exposes the bounded generator. This allows you to “see”
all the values yielded by the unbounded generator up to the point
when the boundary condition is met.

	
class xoutil.bound.BoundaryCondition(definition, name=None, errors=None)

	Embodies the boundary protocol.

The definition argument must a function that implements a boundary
definition. This function may take arguments to initialize the state of
the boundary condition.

Instances are callables that will return a Bounded subclass
specialized with the application of the boundary condition to a given
unbounded function (target). For instance, times(6) returns a
class, that when instantiated with a target represents the bounded
function that takes the 6th valued yielded by target.

If the definition takes no arguments for initialization you may pass the
target directly. This is means that if __call__() receives
arguments they will be used to instantiate the Bounded subclass,
ie. this case allows only a single argument target.

If errors is not None it should be a tuple of exceptions to catch and
throw inside the boundary condition definition. Other exceptions, beside
GeneratorExit and StopIteration, are not handled (so the bubble up). See
until_error().

An example: time bounded batch processing

We have a project in which we need to send emails inside a cron task
(celery [http://docs.celeryproject.org/] is not available). Emails to be sent are placed inside an Outbox
but we may only spent about 60 seconds to send as many emails as we can. If
our emails are reasonably small (i.e will be delivered to the SMTP server in a
few miliseconds) we could use the timed() predicate to bound the
execution of the task:

@timed(50)
def send_emails():
 outbox = Outbox.open()
 try:
 for message in outbox:
 emailbackend.send(message)
 outbox.remove(message)
 yield message
 except GeneratorExit:
 # This means the time we were given is off.
 pass
 finally:
 outbox.close() # commit the changes to the outbox

Notice that you must enclose your batch-processing code in a try
statement if you need to somehow commit changes. Since we may call the
close() method of the generator to signal that it must stop.

A finally clause is not always appropriated cause an error that is not
GeneratorExit error should not commit the data unless you’re sure data changes
that were made before the error could be produced. In the code above the only
place in the code above where an error could happen is the sending of the
email, and the data is only touched for each email that is actually sent. So
we can safely close our outbox and commit the removal of previous message from
the outbox.

Using the Bounded.generate() method

Calling a bounded generator simply returns the last valued produced by the
unbounded generator, but sometimes you need to actually see all the values
produced. This is useful if you need to meld several generators with
partially overlapping boundary conditions.

Let’s give an example by extending a bit the example given in the previous
section. Assume you now need to extend your cron task to also read an Inbox
as much as it can and then send as many messages as it can. Both things
should be done under a given amount of time, however the accumulated size of
sent messages should not surpass a threshold of bytes to avoid congestion.

For this task you may use both timed() and accumulated(). But you
must apply accumulated() only to the process of sending the messages and
the timed boundary to the overall process.

This can be accomplished like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	def communicate(interval, bandwidth):
 from itertools import chain as meld

 def receive():
 for message in Inbox.receive():
 yield message

 @accumulated(bandwith, 'size')
 def send():
 for message in Outbox.messages():
 yield message

 @timed(interval)
 def execute():
 for _ in meld(receive(), send.generate()):
 yield
 return execute()

Let’s break this into its parts:

	The receive function reads the Inbox and yields each message received.

It is actually an unbounded function but don’t want to bound its
execution in isolation.

	The send unbounded function sends every message we have in the Outbox
and yields each one. In this case we can apply the accumulated boundary
to get a Bounded instance.

	Then we define an execute function bounded by timed. This function
melds the receive and send processes, but we can’t actually call
send because we need to yield after each message has been received or
sent. That’s why we need to call the generate() so that the
time boundary is also applied to the sending process.

Note

The structure from this example is actually taken from a real
program, although simplified to serve better for learning. For instance,
in our real-world program bandwidth could be None to indicate no size
limit should be applied to the sending process. Also in the example we’re
not actually saving nor sending messages!

 xoutil.cli – Command line application facilities

xoutil.cli – Command line application facilities

Tools for Command-Line Interface (CLI) applications.

CLI is a mean of interaction with a computer program where the user (or
client) issues commands to the program in the form of successive lines of text
(command lines).

Commands can be registered by:

	sub-classing the Command,

	using register() [https://docs.python.org/3.4/library/abc.html#abc.ABCMeta.register] ABC mechanism for virtual sub-classes,

	redefining ~`Command.sub_commands` class method.

New in version 1.4.1.

	
class xoutil.cli.Command

	Base for all commands.

	
classmethod cli_name()

	Calculate the command name.

Standard method uses ~xoutil.cli.tools.hyphen_name. Redefine it
to obtain a different behaviour.

Example:

>>> class MyCommand(Command):
... pass

>>> MyCommand.cli_name() == 'my-command'
True

	
run(args=None)

	Must return a valid value for “sys.exit”

	
classmethod set_default_command(cmd=None)

	Default command is called when no one is specified.

A command is detected when its name appears as the first command-line
argument.

To specify a default command, use this method with the command as a
string (the command name) or the command class.

If the command is specified, then the calling class is the selected
one.

For example:

>>> Command.set_default_command('server')
>>> Server.set_default_command()
>>> Command.set_default_command(Server)

	
class xoutil.cli.Help

	Show all commands.

Define the class attribute __order__ to sort commands in special command
“help”.

Commands could define its help in the first line of a sequence of
documentations until found:

	command class,

	“run” method,

	definition module.

This command could not be overwritten unless using the class attribute:

__override__ = True

	
classmethod get_arg_parser()

	This is an example on how to build local argument parser.

Use class method “get

Applications

A simple main() entry point for CLI based applications.

This module provides an example of how to use xoutil.cli to create a
CLI application.

	
xoutil.cli.app.main(default=None)

	Execute a command.

It can be given as the first program argument or it’s the default
command is defined.

Tools

Utilities for command-line interface (CLI) applications.

	program_name(): calculate the program name from “sys.argv[0]”.

	
	command_name()\ : calculate command names using class names in lower

	case inserting a hyphen before each new capital letter.

	
xoutil.cli.tools.command_name(cls)

	Calculate a command name from given class.

Names are calculated putting class names in lower case and inserting
hyphens before each new capital letter. For example “MyCommand” will
generate “my-command”.

It’s defined as an external function because a class method don’t apply to
minimal commands (those with only the “run” method).

Example:

>>> class SomeCommand(object):
... pass

>>> command_name(SomeCommand) == 'some-command'
True

If the command class has an attribute command_cli_name, this will be
used instead:

>>> class SomeCommand(object):
... command_cli_name = 'adduser'

>>> command_name(SomeCommand) == 'adduser'
True

It’s an error to have a non-string command_cli_name attribute:

>>> class SomeCommand(object):
... command_cli_name = None

>>> command_name(SomeCommand)
Traceback (most recent call last):
 ...
TypeError: Attribute 'command_cli_name' must be a string.

	
xoutil.cli.tools.hyphen_name(name, join_numbers=True)

	Convert a name to a hyphened slug.

Expects a name in Camel-Case. All invalid characters (those invalid in
Python identifiers) are ignored. Numbers are joined with preceding part
when join_numbers is True.

For example:

>>> hyphen_name('BaseNode') == 'base-node'
True

>> hyphen_name('--__ICQNámeP12_34Abc--') == 'icq-name-p12-34-abc'
True

>> hyphen_name('ICQNámeP12', join_numbers=False) == 'icq-name-p-12'
True

	
xoutil.cli.tools.program_name()

	Calculate the program name from “sys.argv[0]”.

 xoutil.clipping - Text clipping and trimming

xoutil.clipping - Text clipping and trimming

Text clipping and trimming.

	
xoutil.clipping.DEFAULT_MAX_WIDTH = 64

	Default value for max_width parameter in functions that reduce strings,
see crop() and small().

	
xoutil.clipping.ELLIPSIS = '...'

	Value used as a fill when a string representation is brimmed over.

	
xoutil.clipping.MIN_WIDTH = 8

	Value for max_width parameter in functions that reduce strings, must not
be less than this value.

	
xoutil.clipping.crop(obj, max_width=None)

	Return a reduced string representation of obj.

Classes can now define a new special method or attribute named
‘__crop__’.

If max_width is not given, defaults to DEFAULT_MAX_WIDTH.

New in version 1.8.0.

	
xoutil.clipping.crop_iterator(obj, max_width=None)

	Return a reduced string representation of the iterator obj.

See crop() function for a more general tool.

If max_width is not given, defaults to DEFAULT_MAX_WIDTH.

New in version 1.8.0.

	
xoutil.clipping.small(obj, max_width=None)

	Crop the string representation of obj and make some replacements.

	Lambda function representations (‘<lambda>’ by ‘λ’).

	Ellipsis (‘...’ by ‘…’)

If max_width is not given, defaults to DEFAULT_MAX_WIDTH.

New in version 1.8.0.

 xoutil.context - Simple execution contexts

xoutil.context - Simple execution contexts

A context manager for execution context flags.

	
xoutil.context.context

	alias of Context

	
class xoutil.context.Context(*args, **kwargs)

	An execution context manager with parameters (or flags).

Use as:

>>> SOME_CONTEXT = object()
>>> from xoutil.context import context
>>> with context(SOME_CONTEXT):
... if context[SOME_CONTEXT]:
... print('In context SOME_CONTEXT')
In context SOME_CONTEXT

Note the difference creating the context and checking it: for entering a
context you should use context(name) for testing whether some piece of
code is being executed inside a context you should use context[name];
you may also use the syntax name in context.

When an existing context is re-enter, the former one is reused.
Nevertheless, the data stored in each context is local to each level.

For example:

>>> with context('A', b=1) as a1:
... with context('A', b=2) as a2:
... print(a1 is a2)
... print(a2['b'])
... print(a1['b'])
True
2
1

For data access, a mapping interface is provided for all contexts. If a
data slot is deleted at some level, upper level is used to read
values. Each new written value is stored in current level without
affecting upper levels.

For example:

>>> with context('A', b=1) as a1:
... with context('A', b=2) as a2:
... del a2['b']
... print(a2['b'])
1

It is an error to reuse a context directly like in:

>>> with context('A', b=1) as a1:
... with a1:
... pass
Traceback (most recent call last):
...
RuntimeError: Entering the same context level twice! ...

Note

About thread-locals and contexts.

The context uses internally a thread-local [https://docs.python.org/3.4/library/threading.html#threading.local] instance to keep context stacks in different
threads from seeing each other.

If, when this module is imported, greenlet is imported already,
greenlet isolation is also warranted (which implies thread isolation).

If you use collaborative multi-tasking based in other framework other than
greenlet, you must ensure to monkey patch the threading.local class so
that isolation is kept.

In future releases of xoutil, we plan to provide a way to inject a
“process” identity manager so that other frameworks be easily integrated.

Changed in version 1.7.1: Changed the test about greenlet. Instead of
testing for greenlet to be importable, test it is imported already.

Changed in version 1.6.9: Added direct greenlet isolation and removed the
need for gevent.local [http://www.gevent.org/gevent.local.html#module-gevent.local].

New in version 1.6.8: Uses gevent.local [http://www.gevent.org/gevent.local.html#module-gevent.local] if available to isolate
greenlets.

 xoutil.cpystack - Utilities to inspect the CPython’s stack

xoutil.cpystack - Utilities to inspect the CPython’s stack

Utilities to inspect the CPython’s stack.

	
xoutil.cpystack.getargvalues(frame)

	Inspects the given frame for arguments and returns a dictionary that
maps parameters names to arguments values. If an * argument was passed
then the key on the returning dictionary would be formatted as
<name-of-*-param>[index].

For example in the function:

>>> def autocontained(a, limit, *margs, **ks):
... import sys
... return getargvalues(sys._getframe())

>>> autocontained(1, 12)['limit']
12

>>> autocontained(1, 2, -10, -11)['margs[0]']
-10

In Python 2.7, packed arguments also works:

>>> def nested((x, y), radius):
... import sys
... return getargvalues(sys._getframe())

>>> nested((1, 2), 12)['y']
2

	
xoutil.cpystack.error_info(*args, **kwargs)

	Get error information in current trace-back.

No all trace-back are returned, to select which are returned use:

	args: Positional parameters

	If string, represent the name of a function.

	If an integer, a trace-back level.

Return all values.

	kwargs: The same as args but each value is a list of local
names to return. If a value is True, means all local variables.

Return a list with a dict in each item.

Example:

>>> def foo(x):
... x += 1//x
... if x % 2:
... bar(x - 1)
... else:
... bar(x - 2)

>>> def bar(x):
... x -= 1//x
... if x % 2:
... foo(x//2)
... else:
... foo(x//3)

>>> try:
... foo(20)
... except:
... print(printable_error_info('Example', foo=['x'], bar=['x']))
Example
 ERROR: integer division or modulo by zero
 ...

	
xoutil.cpystack.object_info_finder(obj_type, arg_name=None, max_deep=25)

	Find an object of the given type through all arguments in stack frames.

	Returns a tuple with the following values:

	(arg-value, arg-name, deep, frame).

When no object is found
None is returned.

	Arguments:

	object_type: a type or a tuple of types as in “isinstance”.
arg_name: the arg_name to find; if None find in all arguments
max_deep: the max deep to enter in the stack frames.

	
xoutil.cpystack.object_finder(obj_type, arg_name=None, max_deep=25)

	Find an object of the given type through all arguments in stack frames.

The difference with object_info_finder() is that this function
returns the object directly, not a tuple.

	
xoutil.cpystack.track_value(value, max_deep=25)

	Find a value through all arguments in stack frames.

Returns a dictionary with the full-context in the same level as “value”.

	
xoutil.cpystack.iter_stack(max_deep=25)

	Iterates through stack frames until exhausted or max_deep is reached.

To find a frame fulfilling a condition use:

frame = next(f for f in iter_stack() if condition(f))

Using the previous pattern, functions object_info_finder,
object_finder and track_value can be reprogrammed or deprecated.

New in version 1.6.8.

	
xoutil.cpystack.iter_frames(*args, **kw)

	Iterates through all stack frames.

Returns tuples with the following:

(deep, filename, line_no, start_line).

New in version 1.1.3.

Deprecated since version 1.6.8: The use of params attr_filter and value_filter.

 xoutil.crypto - Other cryptographic services

xoutil.crypto - Other cryptographic services

General security tools.

Adds the ability to generate new passwords using a source pass-phrase and a
secury strong level.

	
xoutil.crypto.generate_password(pass_phrase, level=3)

	Generate a password from a source pass-phrase and a security level.

	Parameters:	
	pass_phrase – String pass-phrase to be used as base of password
generation process.

	level – Numerical security level (the bigger the more secure, but
don’t exaggerate!).

When pass_phrase is a valid string, level means a generation method.
Each level implies all other with an inferior numerical value.

There are several definitions with numerical values for level (0-4):

PASS_PHRASE_LEVEL_BASIC

Generate the same pass-phrase, just removing invalid characters and
converting the result to lower-case.

PASS_PHRASE_LEVEL_MAPPED

Replace some characters with new values: 'e'->'3', 'i'->'1',
'o'->'0', 's'->'5'.

PASS_PHRASE_LEVEL_MAPPED_MIXED

Consonants characters before ‘M’ (included) are converted to
upper-case, all other are kept lower-case.

PASS_PHRASE_LEVEL_MAPPED_DATED

Adds a suffix with the year of current date (“<YYYY>”).

PASS_PHRASE_LEVEL_STRICT

Randomly scramble previous result until unbreakable strong password is
obtained.

If pass_phrase is None or an empty string, generate a “secure salt”
(a password not based in a source pass-phrase). A “secure salt” is
generated by scrambling the concatenation of a random phrases from the
alphanumeric vocabulary.

Returned password size is 4*level except when a pass-phrase is given
for level <= 4 where depend on the count of valid characters of
pass-phrase argument, although minimum required is warranted. When
pass-phrase is None for level zero or negative, size 4 is
assumed. First four levels are considered weak.

Maximum size is defined in the MAX_PASSWORD_SIZE constant.

Default level is PASS_PHRASE_LEVEL_MAPPED_DATED when using a
pass-phrase.

	
xoutil.crypto.PASS_PHRASE_LEVEL_BASIC = 0

	The most basic level (less) for the password generation.

	
xoutil.crypto.PASS_PHRASE_LEVEL_MAPPED = 1

	A level for simply mapping of several chars.

	
xoutil.crypto.PASS_PHRASE_LEVEL_MAPPED_MIXED = 2

	Another “stronger” mapping level.

	
xoutil.crypto.PASS_PHRASE_LEVEL_MAPPED_DATED = 3

	Appends the year after mapping.

	
xoutil.crypto.PASS_PHRASE_LEVEL_STRICT = 4

	Totally scramble the result, making very hard to predict the result.

	
xoutil.crypto.DEFAULT_PASS_PHRASE_LEVEL = 3

	The default level for generate_password()

	
xoutil.crypto.MAX_PASSWORD_SIZE = 512

	An upper limit for generated password length.

 xoutil.decorator - Several decorators

xoutil.decorator - Several decorators

This module contains several useful decorators, for several purposed. Also it
severs as a namespace for other well-defined types of decorators.

Warning

This modules will be progressively deprecated during the 1.6
series.

We feel that either xoutil.objects or xoutil.functools are a
better match for some of these decorators. But since we need to make sure
about keeping dependencies, the deprecation won’t be final until 1.7.0.
After 1.8.0, this modules will be finally removed.

Top-level decorators

	
class xoutil.decorator.AttributeAlias(attr_name)

	Descriptor to create aliases for object attributes.

This descriptor is mainly to be used internally by aliases()
decorator.

	
xoutil.decorator.settle(**kwargs)

	Returns a decorator to settle attributes to the decorated target.

Usage:

>>> @settle(name='Name')
... class Person(object):
... pass

>>> Person.name
'Name'

	
xoutil.decorator.namer(name, **kwargs)

	Like settle(), but ‘__name__’ is a required positional argument.

Usage:

>>> @namer('Identity', custom=1)
... class I(object):
... pass

>>> I.__name__
'Identity'

>>> I.custom
1

	
xoutil.decorator.aliases(*names, **kwargs)

	In a class, create an AttributeAlias descriptor for each
definition as keyword argument (alias=existing_attribute).

If “names” are given, then the definition context is looked and are
assigned to it the same decorator target with all new names:

>>> @aliases('foo', 'bar')
... def foobar(*args):
... 'This function is added to its module with two new names.'

	
xoutil.decorator.assignment_operator(func, maybe_inline=False)

	Makes a function that receives a name, and other args to get its first
argument (the name) from an assignment operation, meaning that it if its
used in a single assignment statement the name will be taken from the left
part of the = operator.

Warning

This function is dependant of CPython’s implementation of the
language and won’t probably work on other implementations.
Use only you don’t care about portability, but use sparingly
(in case you change your mind about portability).

	
xoutil.decorator.instantiate(target, *args, **kwargs)

	Some singleton classes must be instantiated as part of its declaration
because they represents singleton objects.

Every argument, positional or keyword, is passed as such when invoking the
target. The following two code samples show two cases:

>>> @instantiate
... class Foobar(object):
... def __init__(self):
... print('Init...')
Init...

>>> @instantiate('test', context={'x': 1})
... class Foobar(object):
... def __init__(self, name, context):
... print('Initializing a Foobar instance with name={name!r} '
... 'and context={context!r}'.format(**locals()))
Initializing a Foobar instance with name='test' and context={'x': 1}

In all cases, Foobar remains the class, not the instance:

>>> Foobar
<class '...Foobar'>

	
class xoutil.decorator.memoized_property(fget, doc=None)

	A read-only property that is only evaluated once.

This is extracted from the SQLAlchemy project’s codebase, merit and
copyright goes to SQLAlchemy authors:

Copyright (C) 2005-2011 the SQLAlchemy authors and contributors

This module is part of SQLAlchemy and is released under the MIT License:
http://www.opensource.org/licenses/mit-license.php

	
class xoutil.decorator.memoized_instancemethod(fget, doc=None)

	Decorate a method memoize its return value.

Best applied to no-arg methods: memoization is not sensitive to
argument values, and will always return the same value even when
called with different arguments.

This is extracted from the SQLAlchemy project’s codebase, merit and
copyright goes to SQLAlchemy authors:

Copyright (C) 2005-2011 the SQLAlchemy authors and contributors

This module is part of SQLAlchemy and is released under the MIT License:
http://www.opensource.org/licenses/mit-license.php

Sub packages

	xoutil.decorator.development - Decorators for development annotations

	xoutil.decorator.meta - Decorator-making facilities

 xoutil.decorator.development - Decorators for development annotations

xoutil.decorator.development - Decorators for development annotations

	
xoutil.decorator.development.unstable(target, msg=None)

	Declares that a method, class or interface is unstable.

This has the side-effect of issuing a warning the first time the target
is invoked.

The msg parameter, if given, should be string that contains, at most,
two positional replacement fields ({0} and {1}). The first replacement
field will be the type of target (interface, class or function) and the
second matches target’s full name.

 xoutil.decorator.meta - Decorator-making facilities

xoutil.decorator.meta - Decorator-making facilities

Decorator-making facilities.

This module provides a signature-keeping version of the
xoutil.decorators.decorator(), which is now deprecated in favor of this
module’s version.

We scinded the decorator-making facilities from decorators per se to allow the
module xoutil.deprecation to be used by decorators and at the same
time, implement the decorator deprecated() more
easily.

This module is an adapted work from the decorator version 3.3.2 package and is
copyright of its owner as stated below. Adaptation work is done by Merchise.

Original copyright and license notices from decorator package:

Copyright (c) 2005-2011, Michele Simionato

All rights reserved.

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in
bytecode form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

	
class xoutil.decorator.meta.FunctionMaker(func=None, name=None, signature=None, defaults=None, doc=None, module=None, funcdict=None)

	An object with the ability to create functions with a given signature.
It has attributes name, doc, module, signature, defaults, dict and
methods update and make.

	
classmethod create(obj, body, evaldict, defaults=None, doc=None, module=None, addsource=True, **attrs)

	Create a function from the strings name, signature and body.
“evaldict” is the evaluation dictionary. If addsource is true an
attribute __source__ is added to the result. The attributes attrs are
added,
if any.

	
make(src_templ, evaldict=None, addsource=False, **attrs)

	Make a new function from a given template and update the signature

	
update(func, **kw)

	Update the signature of func with the data in self

	
xoutil.decorator.meta.flat_decorator(caller, func=None)

	Creates a signature keeping decorator.

decorator(caller) converts a caller function into a decorator.

decorator(caller, func) decorates a function using a caller.

	
xoutil.decorator.meta.decorator(caller)

	Eases the creation of decorators with arguments. Normally a decorator
with arguments needs three nested functions like this:

def decorator(*decorator_arguments):
 def real_decorator(target):
 def inner(*args, **kwargs):
 return target(*args, **kwargs)
 return inner
 return real_decorator

This decorator reduces the need of the first level by comprising both into
a single function definition. However it does not removes the need for an
inner function:

>>> @decorator
... def plus(target, value):
... from functools import wraps
... @wraps(target)
... def inner(*args):
... return target(*args) + value
... return inner

>>> @plus(10)
... def ident(val):
... return val

>>> ident(1)
11

A decorator with default values for all its arguments (except, of course,
the first one which is the decorated target) may be invoked
without parenthesis:

>>> @decorator
... def plus2(func, value=1, missing=2):
... from functools import wraps
... @wraps(func)
... def inner(*args):
... print(missing)
... return func(*args) + value
... return inner

>>> @plus2
... def ident2(val):
... return val

>>> ident2(10)
2
11

But (if you like) you may place the parenthesis:

>>> @plus2()
... def ident3(val):
... return val

>>> ident3(10)
2
11

However, this is not for free, you cannot pass a single positional argument
which type is a function:

>>> def p():
... print('This is p!!!')

>>> @plus2(p)
... def dummy():
... print('This is dummy')
Traceback (most recent call last):
 ...
TypeError: p() takes ...

The workaround for this case is to use a keyword argument.

 xoutil.deprecation - Utils for marking deprecated elements

xoutil.deprecation - Utils for marking deprecated elements

	
xoutil.deprecation.deprecated(replacement, msg=None, deprecated_module=None, removed_in_version=None, check_version=False)

	Small decorator for deprecated functions.

Usage:

@deprecated(new_function)
def deprecated_function(...):
 ...

	Parameters:	
	replacement – Either a string or the object that replaces the
deprecated.

	msg – A deprecation warning message template. You should provide
keyword arguments for the format() [https://docs.python.org/3.4/library/functions.html#format] function. Currently we pass
the current keyword arguments: replacement (after some processing),
funcname with the name of the currently deprecated object and
in_version with the version this object is going to be removed if
removed_in_version argument is not None.

Defaults to: “{funcname} is now deprecated and it will be
removed{in_version}. Use {replacement} instead.”

	removed_in_version – The version the deprecated object is going to be
removed.

	check_version – If True and removed_in_version is not None, then
declarations of obseleted objects will raise a DeprecationError. This
helps the release manager to keep the release clean.

Note

Currently only works with setuptools’ installed distributions.

	deprecated_module – If provided, the name of the module the
deprecated object resides. Not needed if the deprecated object is a
function or class.

	new_name – If provided, it’s used as the name of the
deprecated object. Needed to allow renaming in
import_deprecated() helper function.

Changed in version 1.4.1: Introduces removed_in_version and check_version.

	
xoutil.deprecation.import_deprecated(module, *names, **aliases)

	Import functions deprecating them in the target module.

The target module is the caller of this function (only intended to be
called in the global part of a module).

	Parameters:	
	module – The module from which functions will be imported. Could be
a string, or an imported module.

	names – The names of the functions to import.

	aliases – Keys are the new names, values the old names.

For example:

>>> from xoutil.deprecation import import_deprecated
>>> import math
>>> import_deprecated(math, 'sin', new_cos='cos')
>>> sin is not math.sin
True

Next examples are all True, but them print the deprecation warning
when executed:

>>> sin(math.pi/2) == 1.0
>>> new_cos(2*math.pi) == math.cos(2*math.pi)

If no identifier is given, it is assumed equivalent as from module
import *.

The statement import_deprecated('math', 'sin', new_cos='cos') has the
same semantics as from math import sin, cos as new_cos, but
deprecating current module symbols.

This function is provided for easing the deprecation of whole modules and
should not be used to do otherwise.

	
xoutil.deprecation.inject_deprecated(*args, **kw)

	Injects a set of functions from a module into another.

The functions will be marked as deprecated in the target module.

	Parameters:	
	funcnames – function names to take from the source module.

	source – the module where the functions resides.

	target – the module that will contains the deprecated functions. If
None will be the module calling this function.

This function is provided for easing the deprecation of whole modules and
should not be used to do otherwise.

Deprecated since version 1.8.0: Use import_deprecated().

 xoutil.dim - Facilities to work with concrete numbers

xoutil.dim - Facilities to work with concrete numbers [https://en.wikipedia.org/wiki/Concrete_number]

The name ‘dim’ is a short of dimension. We borrow it from the topic
dimensional analysis [https://en.wikipedia.org/wiki/Dimensional_analysis], even though the scope of this module is less
ambitious.

This module is divided in two major parts: meta-definitions and applications.

	xoutil.dim.meta – Meta-definitions for concrete numbers.

	xoutil.dim.base - The base physical quantities
	Aliases

	Derived quantities

	On the automatically created names for derived quantities

	xoutil.dim.currencies – Concrete numbers for money

 xoutil.dim.meta – Meta-definitions for concrete numbers.

xoutil.dim.meta – Meta-definitions for concrete numbers.

Facilities to work with concrete numbers [https://en.wikipedia.org/wiki/Concrete_number].

A concrete number is a number associated with the things being counted, in
contrast to an abstract number which is a number as a single entity.

 xoutil.dim.base - The base physical quantities

xoutil.dim.base - The base physical quantities [https://en.wikipedia.org/wiki/International_System_of_Quantities#Base_quantities]

The standard physical quantities [https://en.wikipedia.org/wiki/International_System_of_Quantities#Base_quantities].

	
class xoutil.dim.base.Length

	The Length base quantity.

	
metre

	The canonical unit.

	
m

	An alias of metre

Other attributes:

	
kilometre

	

	
km

	

	
centimetre

	

	
cm

	

	
millimetre

	

	
mm

	

	
nanometre

	

	
nm

	

	
class xoutil.dim.base.Time

	The Time base quantity.

	
second

	The canonical unit.

	
s

	An alias of second

Other attributes:

	
millisecond

	

	
ms

	

	
nanosecond

	

	
ns

	

	
minute

	

	
hour

	

	
class xoutil.dim.base.Mass

	The Mass base quantity.

	
kilogram

	The canonical unit.

	
kg

	An alias of kilogram

Other attributes:

	
gram

	

	
class xoutil.dim.base.ElectricCurrent

	The electrical current base quantity.

	
ampere

	The canonical unit.

	
A

	An alias of ampere

	
class xoutil.dim.base.Temperature

	The thermodynamic temperature base quantity.

	
kelvin

	The canonical unit.

	
K

	An alias of kelvin

	
classmethod from_celcius(val)

	Convert val ºC to K

	
classmethod from_fahrenheit(val)

	Convert val ºF to K

	
class xoutil.dim.base.Substance

	The amount of substance.

	
mole

	

	
mol

	An alias of mole.

	
class xoutil.dim.base.Luminosity

	The luminous intensity base quantity.

	
candela

	

Aliases

	
class xoutil.dim.base.L

	An alias of Length

	
class xoutil.dim.base.T

	An alias of Time

	
class xoutil.dim.base.M

	An alias of Mass

	
class xoutil.dim.base.I

	An alias of ElectricCurrent

	
class xoutil.dim.base.O

	An alias of Temperature. We can’t really use the Greek Theta Θ

	
class xoutil.dim.base.N

	An alias of Substance

	
class xoutil.dim.base.J

	An alias of Luminosity

Derived quantities

	
class xoutil.dim.base.Area

	Defined as L**2.

	
metre_squared

	The canonical unit.

	
class xoutil.dim.base.Volume

	Defined as L**3.

	
metre_cubic

	The canonical unit.

	
class xoutil.dim.base.Frequency

	Defined as T**-1 (which is the same as 1/T).

	
unit_per_second

	The canonical unit.

Aliases of the canonical unit:

	
Hz

	

	
class xoutil.dim.base.Force

	Defined as L * M * T**-2.

	
metre_kilogram_per_second_squared

	The canonical unit.

Aliases of the canonical unit:

	
N

	

	
Newton

	

	
class xoutil.dim.base.Presure

	Defined as L**-1 * M * T**-2.

	
kilogram_per_metre_per_second_squared

	

Aliases of the canonical unit:

	
pascal

	

	
Pa

	

	
class xoutil.dim.base.Velocity

	Defined as L * T**-1.

	
metre_per_second

	The canonical unit.

	
class xoutil.dim.base.Acceleration

	Defined as L * T**-2.

	
metre_per_second_squared

	The canonical unit.

On the automatically created names for derived quantities

We automatically create the name of the canonical unit of quantities derived
from others by simple rules:

	A * B joins the canonical unit names together with a low dash ‘_’
in-between. Let’s represent it as a_b, where a stands for the name of
the canonical unit of A and b, the canonical unit of B.

For the case, A * A the unit name is a_squared.

	A/B gets the name a_per_b. 1/A gets the name unit_per_a

	A**n; when n=1 this is the same as A; when n=2 this is the
same as A * A; for other positive values of n, the canonical unit
name is a_pow_n; for negative values of n is the same as 1/A**n;
for n=0 this is the Scalar quantity.

 xoutil.dim.currencies – Concrete numbers for money

xoutil.dim.currencies – Concrete numbers for money

Concrete numbers for money.

You may have 10 dollars and 5 euros in your wallet, that does not mean that
you have 15 of anything (but bills, perhaps). Though you may evaluate your
cash in any other currency you don’t have that value until you perform an
exchange with a given rate.

This module support the family of currencies. Usage:

>>> from xoutil.dim.currencies import Rate, Valuation, currency
>>> dollar = USD = currency('USD')
>>> euro = EUR = currency('EUR')
>>> rate = 1.19196 * USD/EUR

>>> isinstance(dollar, Valuation)
True

>>> isinstance(rate, Rate)
True

Even 0 dollars are a valuation
>>> isinstance(dollar - dollar, Valuation)
True

But 1 is not a value nor a rate
>>> isinstance(dollar/dollar, Valuation) or isinstance(dollar/dollar, Rate)
False

Currency names are case-insensitive. We don’t check the currency name is
listed in ISO 4217 [https://en.wikipedia.org/wiki/ISO_4217]. So currency MVA is totally acceptable in this
module.

We don’t download rates from any source.

This module allows you to trust your computations of money by allowing only
sensible operations:

>>> dollar + euro
Traceback (...)
...
OperandTypeError: unsupported operand type(s) for +: '{USD}/{}' and '{EUR}/{}

If you convert your euros to dollars:

>>> dollar + rate * euro
2.19196::{USD}/{}

Or your dollars to euros
>>> dollar/rate + euro
1.83895432733::{EUR}/{}

 xoutil.eight – Extensions for writing code that runs on Python 2 and 3

xoutil.eight – Extensions for writing code that runs on Python 2 and 3

Todo

check automodule:: xoutil.eight
:members:

The name comes from (Manu’s idea’) “2 raised to the power of 3”.

This module is divided in several parts.

	xoutil.eight.abc - Abstract Base Classes (ABCs) according to PEP 3119

	xoutil.eight.meta - metaclass function using Python 3 syntax

	xoutil.eight.mixins - functions to create helper classes and mixins

	xoutil.eight.string - Checkers for simple types

	xoutil.eight.text - TODO

	xoutil.eight.io - Extensions to Python’s io module

	xoutil.eight.queue - A multi-producer, multi-consumer queue

	xoutil.eight.exceptions - Exceptions handling compatibility

 xoutil.eight.abc - Abstract Base Classes (ABCs) according to PEP 3119

xoutil.eight.abc - Abstract Base Classes (ABCs) according to PEP 3119

Abstract Base Classes (ABCs) according to PEP 3119.

Compatibility module between Python

 xoutil.eight.meta - metaclass function using Python 3 syntax

xoutil.eight.meta - metaclass function using Python 3 syntax

Implements the metaclass() function using the Py3k syntax.

	
xoutil.eight.meta.metaclass(meta, **kwargs)

	Define the metaclass of a class.

New in version 1.7.0: It’s available as
xoutil.objects.metaclass() since 1.4.1. That alias is now
deprecated and will be removed in 1.8.

This function allows to define the metaclass of a class equally in Python
2 and 3.

Usage:

>>> class Meta(type):
... pass

>>> class Foobar(metaclass(Meta)):
... pass

>>> class Spam(metaclass(Meta), dict):
... pass

>>> type(Spam) is Meta
True

>>> Spam.__bases__ == (dict,)
True

New in version 1.5.5: The kwargs keywords arguments with support for
__prepare__.

Metaclasses are allowed to have a __prepare__ classmethod to return
the namespace into which the body of the class should be evaluated. See
PEP 3115 [https://www.python.org/dev/peps/pep-3115].

Warning

The PEP 3115 [https://www.python.org/dev/peps/pep-3115] is not possible to implement in Python 2.7.

Despite our best efforts to have a truly compatible way of creating
meta classes in both Python 2.7 and 3.0+, there is an inescapable
difference in Python 2.7. The PEP 3115 [https://www.python.org/dev/peps/pep-3115] states that __prepare__
should be called before evaluating the body of the class. This is not
possible in Python 2.7, since __new__ already receives the
attributes collected in the body of the class. So it’s always too late
to call __prepare__ at this point and the Python 2.7 interpreter
does not call it.

Our approach for Python 2.7 is calling it inside the __new__ of a
“side” metaclass that is used for the base class returned. This means
that __prepare__ is called only for classes that use the
metaclass() directly. In the following hierarchy:

class Meta(type):
 @classmethod
 def __prepare__(cls, name, bases, **kwargs):
 from xoutil.future.collections import OrderedDict
 return OrderedDict()

class Foo(metaclass(Meta)):
 pass

class Bar(Foo):
 pass

when creating the class Bar the __prepare__() class method is
not called in Python 2.7!

See also

xoutil.future.types.prepare_class() and
xoutil.future.types.new_class().

Warning

You should always place your metaclass declaration first in the list
of bases. Doing otherwise triggers twice the metaclass’ constructors
in Python 3.1 or less.

If your metaclass has some non-idempotent side-effect (such as
registration of classes), then this would lead to unwanted double
registration of the class:

>>> class BaseMeta(type):
... classes = []
... def __new__(cls, name, bases, attrs):
... res = super(BaseMeta, cls).__new__(cls, name, bases, attrs)
... cls.classes.append(res) # <-- side effect
... return res

>>> class Base(metaclass(BaseMeta)):
... pass

>>> class SubType(BaseMeta):
... pass

>>> class Egg(metaclass(SubType), Base): # <-- metaclass first
... pass

>>> Egg.__base__ is Base # <-- but the base is Base
True

>>> len(BaseMeta.classes) == 2
True

>>> class Spam(Base, metaclass(SubType)):
... 'Like "Egg" but it will be registered twice in Python 2.x.'

In this case the registration of Spam ocurred twice:

>>> BaseMeta.classes
[<class Base>, <class Egg>, <class Spam>, <class Spam>]

Bases, however, are just fine:

>>> Spam.__bases__ == (Base,)
True

New in version 1.7.1: Now are accepted atypical meta-classes, for
example functions or any callable with the same arguments as those that
type accepts (class name, tuple of base classes, attributes mapping).

 xoutil.eight.mixins - functions to create helper classes and mixins

xoutil.eight.mixins - functions to create helper classes and mixins

Two functions to create helper classes and mixins.

This module is in the eight context because these two functions depend on
several concepts that are different in Python 2 and 3.

	helper_class() creates a base class that represent a meta-class. For
example (only for Python 3), xoutil.eight.abc.ABC is different to
abc.ABC:

>>> from xoutil.eight.abc import ABC, ABCMeta
>>> class One(ABC):
... pass
>>> One.__bases__ == (ABC,)
False
>>> One.__bases__ == (Mixin,)
True

>>> from abc import ABC
>>> class Two(ABC):
... pass
>>> Two.__bases__ == (ABC,)
True
>>> Two.__bases__ == (Mixin,)
False

	mixin() create a base-class tha consolidate several mix-ins and
meta-classes. For example:

>>> from xoutil.eight.abc import ABCMeta

>>> class One(dict):
... pass

>>> class Two(object):
... pass

>>> class OneMeta(type):
... pass

>>> class TwoMeta(type):
... pass

>>> Test = mixin(One, Two, meta=[OneMeta, TwoMeta, ABCMeta], name='Test')
>>> Test.__name__ == 'Test'
True
>>> isinstance(Test, ABCMeta)
True

These modules (this one and meta) must have four utilities:

	metaclass to use a unique syntax to declare meta-classes between Python 2
and 3.

	helper_class to build a class that when used as a base impose a meta-class
and not is found in resulting bases of defined class. For example
xoutil.eight.abc.ABC.

	mixin build a mixin-base composing several parts and meta-classes.

	compose specify the use of a mixin as one of the bases, but the new
defined class will not be a mixin, this is not implemented yet because will
require a big architecture re-factoring; for example:

class Foobar(MyBase, compose(MyMixin)):
 pass

Maybe the last two names must be interchanged.

	
xoutil.eight.mixins.helper_class(meta, name=None)

	Create a helper class based in the meta-class concept.

	Parameters:	
	meta – The meta-class type to base returned helper-class on it.

	name – The name (__name__) to assign to the returned class; if
None is given, a nice name is calculated.

For example:

>>> from abc import ABCMeta
>>> ABC = helper_class(ABCMeta) # better than Python 3's abc.ABC :(
>>> class MyError(Exception, ABC):
... pass
>>> (MyError.__bases__ == (Exception,), hasattr(MyError, 'register'))
(True, True)

This function calls metaclass() internally. So, in the example
anterior, MyError declaration is equivalent to:

>>> class MyError(Exception, metaclass(ABCMeta)):
... pass

	
xoutil.eight.mixins.mixin(*args, **kwargs)

	Weave a mixin.

Parameters of this function are a little tricky.

	Parameters:	
	name – The name of the new class created by this function. Could be
passed as positional or keyword argument. Use __name__ as an
alias. See helper_class() for more info about this parameter
and next two.

	doc – Documentation of the returned mixin-class. Could be passed as
positional or keyword argument. Use __doc__ as an alias.

	module – Always given as a keyword parameter. A string -or an
object to be used as reference- representing the module name. Use
__module__ as an alias.

	metaclass – Always given as a keyword parameter. Could be one type
value or a list of values (multiples meta-classes). Use
(__metaclass__, metaclasses, or meta) as aliases.

If several mixins with the same base are used all-together in a class
inheritance, Python generates TypeError: multiple bases have instance
lay-out conflict. To avoid that, inherit from the class this function
returns instead of desired base.

 xoutil.eight.string - Checkers for simple types

xoutil.eight.string - Checkers for simple types

Technical string handling.

Technical strings are those that requires to be instances of str standard
type. See String Ambiguity in Python for more information.

This module will be used mostly as a namespace, for example:

from xoutil.eight import string
Foobar.__name__ = string.force(class_name)

If these functions are going to be used standalone, do something like:

from xoutil.eight.string import force as force_str
Foobar.__name__ = force_str(class_name)

	
xoutil.eight.string.check_identifier(s)

	Check if s is a valid identifier.

	
xoutil.eight.string.force(value='')

	Convert any value to standard str type in a safe way.

This function is useful in some scenarios that require str type (for
example attribute __name__ in functions and types).

As str is bytes in Python

 xoutil.eight.text - TODO

xoutil.eight.text - TODO

Text handling, strings can be part of internationalization processes.

See String Ambiguity in Python for more information.

New in version 1.8.0.

	
xoutil.eight.text.force(buffer, encoding=None)

	Convert any value to standard text type in a safe way.

The standard text type is unicode in Python

 xoutil.eight.io - Extensions to Python’s io module

xoutil.eight.io - Extensions to Python’s io module

Extensions to Python’s io module.

You may use it as drop-in replacement of io. Although we don’t document
all items here. Refer to io [https://docs.python.org/3.4/library/io.html#module-io] documentation.

In Python 2, buil-int open() [https://docs.python.org/3.4/library/functions.html#open] is different from io.open() [https://docs.python.org/3.4/library/io.html#io.open]; in
Python 3 are the same function.

So, generated files with the built-in funtion in Python 2, can not be
processed using abc types, for example:

f = open('test.rst')
assert isinstance(f, io.IOBase)

will fail in Python 2 and not in Python 3.

Another incompatibilities:

	file type doesn’t exists in Python 3.

	Python 2 instances created with io.StringIO:class`, or with
io.open() [https://docs.python.org/3.4/library/io.html#io.open] using text mode, don’t accept str values, so it will be
better to use any of the standards classes (StringIO.StringIO [https://docs.python.org/2.7/library/stringio.html#StringIO.StringIO],
cStringIO.StringIO or open() [https://docs.python.org/3.4/library/functions.html#open] built-in).

New in version 1.7.0.

	
xoutil.eight.io.is_file_like(obj)

	Return if obj is a valid file type or not.

 xoutil.eight.queue - A multi-producer, multi-consumer queue

xoutil.eight.queue - A multi-producer, multi-consumer queue

A multi-producer, multi-consumer queue.

 xoutil.eight.exceptions - Exceptions handling compatibility

xoutil.eight.exceptions - Exceptions handling compatibility

Solve compatibility issues for exceptions handling.

Python

 xoutil.formatter - Formatting

xoutil.formatter - Formatting

Smart formatting.

	
class xoutil.formatter.Template(template)

	A string class for supporting $-substitutions.

It has similar interface that string.Template but using “eval” instead
simple dictionary looking.

This means that you get all the functionality provided by string.Template
(although, perhaps modified) and you get also the ability to write more
complex expressions.

If you need repetition or other flow-control sentences you should use
other templating system.

If you enclose and expression within ${?...} it will be evaluated as a
python expression. Simple variables are allowed just with $var or
${var}:

>>> tpl = Template(str('${?1 + 1} is 2, and ${?x + x} is $x + ${x}'))
>>> (tpl % dict(x=4)) == '2 is 2, and 8 is 4 + 4'
True

The mapping may be given by calling the template:

>>> tpl(x=5) == '2 is 2, and 10 is 5 + 5'
True

	
xoutil.formatter.count(source, chars)

	Counts how chars from chars are found in source:

>>> count('Todos los nenes del mundo vamos una rueda a hacer', 'a')
1

The vowel "i" is missing
>>> count('Todos los nenes del mundo vamos una rueda a hacer', 'aeiuo')
4

 xoutil.fp – Functional Programming in Python

xoutil.fp – Functional Programming in Python

Advanced functional programming in Python.

Note

This module is in EXPERIMENTAL state, we encourage not to use it
before declared stable.

Ideally, a function only takes inputs and produce outputs, and doesn’t have
any internal state that affects the output produced for a given input (like in
Haskell).

Contents

	xoutil.fp.option - Functional Programming Option Type

	xoutil.fp.prove - Prove validity of values

	xoutil.fp.tools – High-level pure function tools

 xoutil.fp.option - Functional Programming Option Type

xoutil.fp.option - Functional Programming Option Type

Functional Programming Option Type definition.

In Programming, and Type Theory, an option type, or maybe type, represents
encapsulation of an optional value; e.g., it is used in functions which may or
may not return a meaningful value when they are applied.

It consists of either a constructor encapsulating the original value x
(written Just x or Some x) or an empty constructor (called None or
Nothing). Outside of functional programming, these are known as nullable
types.

In our case option type will be the Maybe class (the equivalent of
Option in Scala Programming Language), the wrapper for valid values will
be the Just class (equivalent of Some in Scala); and the wrapper
for invalid values will be the Wrong class.

Instead of None or Nothing, Wrong is used because two reasons:
(1)

 xoutil.fp.prove - Prove validity of values

xoutil.fp.prove - Prove validity of values

Proving success or failure of a function call has two main patterns:

	Predicative: a function call returns one or more values indicating a
failure, for example method find in strings returns -1 if the
sub-string is not found. In general this pattern considers a set of values
as logical Boolean true, an other set false.

Example:

index = s.find('x')
if index >= 0:
 ... # condition of success
else:
 ... # condition of failure

	Disruptive: a function call throws an exception on a failure breaking the
normal flow of execution, for example method index in strings.

Example:

try:
 index = s.index('x)
except ValueError:
 ... # condition of failure
else:
 ... # condition of success

The exception object contains the semantics of the “”anomalous condition”.
Exception handling can be used as flow control structures for execution
context inter-layer processing, or as a termination condition.

Module content

Validity proofs for data values.

There are some basic helper functions:

	predicative() wraps a function in a way that a logical false value is
returned on failure. If an exception is raised, it is returned wrapped as
an special false value. See Maybe monad for more
information.

	vouch() wraps a function in a way that an exception is raised if
an invalid value (logical false by default) is returned. This is useful to
call functions that use “special” false values to signal a failure.

	enfold() creates a decorator to convert a function to use either the
predicative() or the vouch() protocol.

New in version 1.8.0.

	
xoutil.fp.prove.enfold(checker)

	Create a decorator to execute a function inner a safety wrapper.

	Parameters:	checker – Could be any function to enfold, but it’s intended mainly
for predicative() or vouch() functions.

In the following example, the semantics of this function can be seen. The
definition:

>>> @enfold(predicative)
... def test(x):
... return 1 <= x <= 10

>>> test(5)
5

It is equivalent to:

>>> def test(x):
... return 1 <= x <= 10

>>> predicative(test, 5)
5

In other hand:

>>> @enfold(predicative)
... def test(x):
... return 1 <= x <= 10

>>> test(15)
5

	
xoutil.fp.prove.predicative(function, *args, **kwds)

	Call a function in a safety wrapper returning a false value if fail.

This converts any function into a predicate. A predicate can be thought
as an operator or function that returns a value that is either true or
false.

Predicates are sometimes used to indicate set membership: on certain
occasions it is inconvenient or impossible to describe a set by listing
all of its elements. Thus, a predicate P(x) will be true or false,
depending on whether x belongs to a set.

If the argument function validates its arguments, return a valid true
value. There are two special conditions: first, a value treated as false
for Python conventions (for example, 0, or an empty string); and
second, when an exception is raised; in both cases the predicate will
return an instance of Maybe.

	
xoutil.fp.prove.vouch(function, *args, **kwds)

	Call a function in a safety wrapper raising an exception if it fails.

When the wrapped function fails, an exception must be raised. A predicate
fails when it returns a false value. To avoid treat false values of some
types as fails, use Just to return that values wrapped.

 xoutil.fp.tools – High-level pure function tools

xoutil.fp.tools – High-level pure function tools

Tools for working with functions in a more “pure” way.

	
class xoutil.fp.tools.compose(*funcs)

	Composition of several functions.

Functions are composed right to left. A composition of zero functions
gives back the identity() function.

Rules must be fulfilled (those inner all):

>>> x = 15
>>> f, g, h = x.__add__, x.__mul__, x.__xor__
>>> all((compose() is identity,
...
... # identity functions are optimized
... compose(identity, f, identity) is f,
...
... compose(f) is f,
... compose(g, f)(x) == g(f(x)),
... compose(h, g, f)(x) == h(g(f(x)))))
True

If any “intermediate” function returns an instance of:

	pos_args: it’s expanded as variable positional arguments to
the next function.

	kw_args: it’s expanded as variable keyword arguments to the
next function.

	full_args: it’s expanded as variable positional and keyword
arguments to the next function.

The expected usage of these is not to have function return those types
directly, but to use them when composing functions that return tuples and
expect tuples.

	
xoutil.fp.tools.identity(arg)

	Returns its argument unaltered.

	
class xoutil.fp.tools.pos_args

	Mark variable number positional arguments (see fargs).

	
class xoutil.fp.tools.kw_args

	Mark variable number keyword arguments (see fargs).

	
class xoutil.fp.tools.full_args

	Mark variable number arguments for composition.

Pair containing positional and keyword (args, kwds) arguments.

In standard functional composition, the result of a function is considered
a single value to be use as the next function argument. You can override
this behaviour returning one instance of pos_args,
kw_args, or this class; in order to provide multiple arguments to
the next call.

Since types are callable, you may use it directly in compose()
instead of changing your functions to returns the instance of one of these
classes:

>>> def join_args(*args):
... return ' -- '.join(str(arg) for arg in args)

>>> compose(join_args, pos_args, list, range)(2)
'0 -- 1'

Without 'pos_args', it prints the list
>>> compose(join_args, list, range)(2)
'[0, 1]'

 xoutil.fs – file system utilities

xoutil.fs – file system utilities

File system utilities.

This module contains file-system utilities that could have side-effects. For
path-handling functions that have no side-effects look at
xoutil.fs.path.

	
xoutil.fs.ensure_filename(filename, yields=False)

	Ensures the existence of a file with a given filename.

If the filename is taken and is not pointing to a file (or a link to a
file) an OSError is raised. If exist_ok is False the filename must not
be taken; an OSError is raised otherwise.

The function creates all directories if needed. See makedirs() for
restrictions.

If yields is True, returns the file object. This way you may open a
file for writing like this:

with ensure_filename('/tmp/good-name-87.txt', yields=True) as fh:
 fh.write('Do it!')

The file is open in mode ‘w+b’.

New in version 1.6.1: Added parameter yield.

	
xoutil.fs.imap(func, pattern)

	Yields func(file_0, stat_0), func(file_1, stat_1), ... for each dir
path. The pattern may contain:

	Simple shell-style wild-cards à la fnmatch.

	Regex if pattern starts with ‘(?’. Expressions must be valid, as
in “(?:[^.].*)$” or “(?i).*.jpe?g$”. Remember to add the end mark ‘$’
if needed.

	
xoutil.fs.iter_dirs(top='.', pattern=None, regex_pattern=None, shell_pattern=None)

	Iterate directories recursively.

The params have analagous meaning that in iter_files() and the same
restrictions.

	
xoutil.fs.iter_files(top='.', pattern=None, regex_pattern=None, shell_pattern=None, followlinks=False, maxdepth=None)

	Iterate filenames recursively.

	Parameters:	
	top – The top directory for recurse into.

	pattern – A pattern of the files you want to get from the iterator.
It should be a string. If it starts with “(?” it will be
regarded as a regular expression, otherwise a shell
pattern.

	regex_pattern – An alternative to pattern. This will always be
regarded as a regular expression.

	shell_pattern – An alternative to pattern. This should be a
shell pattern.

	followlinks – The same meaning that in os.walk.

New in version 1.2.1.

	maxdepth – Only files above this level will be yielded. If None, no
limit is placed.

New in version 1.2.1.

Warning

It’s an error to pass more than pattern argument.

	
xoutil.fs.listdir(path)

	Same as os.listdir but normalizes path and raises no error.

	
xoutil.fs.rmdirs(top='.', pattern=None, regex_pattern=None, shell_pattern=None, exclude=None, confirm=None)

	Removes all empty dirs at top.

	Parameters:	
	top – The top directory to recurse into.

	pattern – A pattern of the dirs you want to remove.
It should be a string. If it starts with “(?” it will be
regarded as a regular expression, otherwise a shell
pattern.

	exclude – A pattern of the dirs you DON’T want to remove. It should
be a string. If it starts with “(?” it will be regarded as
a regular expression, otherwise a shell pattern. This is a
simple commodity to have you not to negate complex
patterns.

	regex_pattern – An alternative to pattern. This will always be
regarded as a regular expression.

	shell_pattern – An alternative to pattern. This should be a
shell pattern.

	confirm – A callable that accepts a single argument, which is
the path of the directory to be deleted. confirm
should return True to allow the directory to be
deleted. If confirm is None, then all matched dirs
are deleted.

Note

In order to avoid common mistakes we won’t attempt to
remove mount points.

New in version 1.1.3.

	
xoutil.fs.stat(path)

	Return file or file system status.

This is the same as the function os.stat but raises no error.

	
xoutil.fs.walk_up(start, sentinel)

	Given a start directory walk-up the file system tree until either the
FS root is reached or the sentinel is found.

The sentinel must be a string containing the file name to be found.

Warning

If sentinel is an absolute path that exists this will return
start, no matter what start is (in windows this could be even
different drives).

If start path exists but is not a directory an OSError is raised.

	
xoutil.fs.concatfiles(*files, target)

	Concat several files to a single one.

Each positional argument must be either:

	a file-like object (ready to be passed to shutil.copyfileobj() [https://docs.python.org/3.4/library/shutil.html#shutil.copyfileobj])

	a string, the file path.

The last positional argument is the target. If it’s file-like object it
must be open for writing, and the caller is the responsible for closing
it.

Alternatively if there are only two positional arguments and the first is
a collection, the sources will be the members of the first argument.

	
xoutil.fs.makedirs(path, mode=0o777, exist_ok=False)

	Recursive directory creation function. Like os.mkdir() [https://docs.python.org/3.4/library/os.html#os.mkdir], but makes
all intermediate-level directories needed to contain the leaf directory.

The default mode is 0o777 (octal). On some systems, mode is
ignored. Where it is used, the current umask value is first masked out.

If exist_ok is False (the default), an OSError [https://docs.python.org/3.4/library/exceptions.html#OSError] is raised if
the target directory already exists.

Note

makedirs() will become confused if the path elements to
create include os.pardir [https://docs.python.org/3.4/library/os.html#os.pardir] (eg. ”..” on UNIX systems).

This function handles UNC paths correctly.

Changed in version 1.6.1: Behaves as Python 3.4.1.

Before Python 3.4.1 (ie. xoutil 1.6.1), if exist_ok was True and
the directory existed, makedirs() would still raise an error if
mode did not match the mode of the existing directory. Since this
behavior was impossible to implement safely, it was removed in Python
3.4.1. See the original os.makedirs() [https://docs.python.org/3.4/library/os.html#os.makedirs].

Contents:

	xoutil.fs.path – Path utilities

 xoutil.fs.path – Path utilities

xoutil.fs.path – Path utilities

Extensions to os.path

Functions inside this module must not have side-effects on the
file-system. This module re-exports (without change) several functions from the
os.path [https://docs.python.org/3.4/library/os.path.html#module-os.path] standard module.

	
xoutil.fs.path.join(base, *extras)

	Join two or more pathname components, inserting ‘/’ as needed.

If any component is an absolute path, all previous path components
will be discarded.

Normalize path (after join parts), eliminating double slashes, etc.

	
xoutil.fs.path.fix_encoding(name, encoding=None)

	Fix encoding of a file system resource name.

encoding is ignored if name is already a str.

	
xoutil.fs.path.normalize_path(base, *extras)

	Normalize path by:

	expanding ‘~’ and ‘~user’ constructions.

	eliminating double slashes

	converting to absolute.

	
xoutil.fs.path.shorten_module_filename(filename)

	A filename, normally a module o package name, is shortened looking his
head in all python path.

	
xoutil.fs.path.shorten_user(filename)

	A filename is shortened looking for the (expantion) $HOME in his head
and replacing it by ‘~’.

	
xoutil.fs.path.rtrim(path, n=1)

	Trims the last n components of the pathname path.

This basically applies n times the function os.path.dirname to path.

path is normalized before proceeding (but not tested to exists).

Changed in version 1.5.5: n defaults to 1. In this case rtrim is
identical to os.path.dirname() [https://docs.python.org/3.4/library/os.path.html#os.path.dirname].

Example:

>>> rtrim('/tmp/a/b/c/d', 3)
'/tmp/a'

It does not matter if `/` is at the end
>>> rtrim('/tmp/a/b/c/d/', 3)
'/tmp/a'

 xoutil.future - Extend standard modules with “future” features

xoutil.future - Extend standard modules with “future” features

Extend standard modules including “future” features in current versions.

Version 3 introduce several concepts in standard modules. Sometimes these
features are implemented in the evolution of 2.7.x versions. By using
sub-modules, these differences can be avoided transparently. For example, you
can import xoutil.future.collections.UserDict in any version, that
it’s equivalent to Python 3 collections.UserDict [https://docs.python.org/3.4/library/collections.html#collections.UserDict], but it don’t exists
in Python 2.

New in version 1.7.2.

Contents

	xoutil.future.codecs - Codec registry, base classes and tools

	xoutil.future.collections - High-performance container datatypes

	xoutil.future.datetime - Basic date and time types

	xoutil.future.functools - Higher-order functions and callable objects

	xoutil.future.inspect - Inspect live objects

	xoutil.future.json - Encode and decode the JSON format

	xoutil.future.pprint - Extension to the data pretty printer

	xoutil.future.subprocess - Extensions to subprocess stardard module

	xoutil.future.textwrap - Text wrapping and filling

	xoutil.future.threading - Higher-level threading interface

	xoutil.future.types - Names for built-in types and extensions

 xoutil.future.codecs - Codec registry, base classes and tools

xoutil.future.codecs - Codec registry, base classes and tools

This module extends the standard library’s functools [https://docs.python.org/3.4/library/functools.html#module-functools]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added the following features.

	
xoutil.future.codecs.force_encoding(encoding=None)

	Validates an encoding value; if None use locale.getlocale()[1]; else
return the same value.

New in version 1.2.0.

Changed in version 1.8.0: migrated to ‘future.codecs’

	
xoutil.future.codecs.safe_decode(s, encoding=None)

	Similar to bytes decode method returning unicode.

Decodes s using the given encoding, or determining one from the system.

Returning type depend on python version; if 2.x is unicode if 3.x str.

New in version 1.1.3.

Changed in version 1.8.0: migrated to ‘future.codecs’

	
xoutil.future.codecs.safe_encode(u, encoding=None)

	Similar to unicode encode method returning bytes.

Encodes u using the given encoding, or determining one from the system.

Returning type is always bytes; but in python 2.x is also str.

New in version 1.1.3.

Changed in version 1.8.0: migrated to ‘future.codecs’

 xoutil.future.collections - High-performance container datatypes

xoutil.future.collections - High-performance container datatypes

This module extends the standard library’s collections [https://docs.python.org/3.4/library/collections.html#module-collections]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since this is different in Python 2.7
and Python 3.3. Notably importing abc is not available in Python 2.7.

We have backported several Python 3.3 features but not all.

	
class xoutil.future.collections.defaultdict

	A hack for collections.defaultdict that passes the key and a copy of
self as a plain dict (to avoid infinity recursion) to the callable.

Examples:

>>> from xoutil.future.collections import defaultdict
>>> d = defaultdict(lambda key, d: 'a')
>>> d['abc']
'a'

Since the second parameter is actually a dict-copy, you may (naively) do
the following:

>>> d = defaultdict(lambda k, d: d[k])
>>> d['abc']
Traceback (most recent call last):
 ...
KeyError: 'abc'

You may use this class as a drop-in replacement for
collections.defaultdict:

>>> d = defaultdict(lambda: 1)
>>> d['abc']
1

	
class xoutil.future.collections.opendict

	A dictionary implementation that mirrors its keys as attributes:

>>> d = opendict({'es': 'spanish'})
>>> d.es
'spanish'

>>> d['es'] = 'espanol'
>>> d.es
'espanol'

Setting attributes does not makes them keys.

	
class xoutil.future.collections.Counter(*args, **kwds)

	Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values.

>>> c = Counter('abcdeabcdabcaba') # count elements from a string

>>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts
15

>>> c['a'] # count of letter 'a'
5
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
7
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b'
0

>>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a'
9

>>> c.clear() # empty the counter
>>> c
Counter()

Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared:

>>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)]

Note

Backported from Python 3.3. In Python 3.3 this is an alias.

	
class xoutil.future.collections.OrderedDict(*args, **kwds)

	Dictionary that remembers insertion order

Note

Backported from Python 3.3. In Python 3.3 this is an alias.

	
class xoutil.future.collections.OpenDictMixin

	A mixin for mappings implementation that expose keys as attributes:

>>> from xoutil.objects import SafeDataItem as safe

>>> class MyOpenDict(OpenDictMixin, dict):
... __slots__ = safe.slot(OpenDictMixin.__cache_name__, dict)

>>> d = MyOpenDict({'es': 'spanish'})
>>> d.es
'spanish'

>>> d['es'] = 'espanol'
>>> d.es
'espanol'

When setting or deleting an attribute, the attribute name is regarded as
key in the mapping if neither of the following condition holds:

	The name is a slot.

	The object has a __dict__ attribute and the name is key there.

This mixin defines the following features that can be redefined:

_key2identifier

Protected method, receive a key as argument and return a valid
identifier that is used instead the key as an extended attribute.

__cache_name__

Inner field to store a cached mapping between actual keys and
calculated attribute names. The field must be always implemented as a
SafeDataItem descriptor and must be of type dict. There are two
ways of implementing this:

	As a slot. The first time of this implementation is an example.
Don’t forget to pass the second parameter with the constructor
dict.

	As a normal descriptor:

>>> from xoutil.objects import SafeDataItem as safe
>>> class MyOpenDict(OpenDictMixin, dict):
... safe(OpenDictMixin.__cache_name__, dict)

	Classes or Mixins that can be integrated with dict by inheritance

	must not have a __slots__ definition. Because of that, this mixin
must not declare any slot. If needed, it must be declared explicitly
in customized classed like in the example in the first part of this
documentation or in the definition of opendict class.

	
class xoutil.future.collections.OrderedSmartDict(*args, **kwds)

	A combination of the OrderedDict with the SmartDictMixin.

Warning

Initializing with kwargs does not ensure any initial ordering,
since Python’s keyword dict is not ordered. Use a list/tuple
of pairs instead.

	
class xoutil.future.collections.SmartDictMixin

	A mixin that extends the update method of dictionaries

Standard method allow only one positional argument, this allow several.

Note on using mixins in Python: method resolution order is calculated in
the order of inheritance, if a mixin is defined to overwrite behavior
already existent, use first that classes with it. See SmartDict
below.

	
class xoutil.future.collections.StackedDict(*args, **kwargs)

	A multi-level mapping.

A level is entered by using the push() and is leaved by calling
pop().

The property level returns the actual number of levels.

When accessing keys they are searched from the latest level “upwards”, if
such a key does not exists in any level a KeyError is raised.

Deleting a key only works in the current level; if it’s not defined there
a KeyError is raised. This means that you can’t delete keys from the upper
levels without popping.

Setting the value for key, sets it in the current level.

Changed in version 1.5.2: Based on the newly introduced ChainMap.

	
pop()

	A deprecated alias for pop_level().

Deprecated since version 1.7.0.

	
push(*args, **kwargs)

	A deprecated alias for push_level().

Deprecated since version 1.7.0.

	
level

	Return the current level number.

The first level is 0. Calling push() increases the current
level (and returns it), while calling pop() decreases the
current level (if possible).

	
peek()

	Peeks the top level of the stack.

Returns a copy of the top-most level without any of the keys from
lower levels.

Example:

>>> sdict = StackedDict(a=1, b=2)
>>> sdict.push(c=3) # it returns the level...
1
>>> sdict.peek()
{'c': 3}

	
pop_level()

	Pops the last pushed level and returns the whole level.

If there are no levels in the stacked dict, a TypeError is raised.

	Returns:	A dict containing the poped level.

	
push_level(*args, **kwargs)

	Pushes a whole new level to the stacked dict.

	Parameters:	
	args – Several mappings from which the new level will be
initialled filled.

	kwargs – Values to fill the new level.

	Returns:	The pushed level number.

	
class xoutil.future.collections.ChainMap(*maps)

	A ChainMap groups multiple dicts or other mappings together to create a
single, updateable view. If no maps are specified, a single empty
dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can
accessed or updated using the maps attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found.
In contrast, writes, updates, and deletions only operate on the first
mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of
the underlying mappings gets updated, those changes will be reflected in
ChainMap.

All of the usual dictionary methods are supported. In addition, there is a
maps attribute, a method for creating new subcontexts, and a property for
accessing all but the first mapping:

	
maps

	A user updateable list of mappings. The list is ordered from
first-searched to last-searched. It is the only stored state and can be
modified to change which mappings are searched. The list should always
contain at least one mapping.

	
new_child(m=None)

	Returns a new ChainMap containing a new map followed by all of
the maps in the current instance. If m is specified, it becomes the
new map at the front of the list of mappings; if not specified, an empty
dict is used, so that a call to d.new_child() is equivalent to:
ChainMap({}, *d.maps). This method is used for creating subcontexts
that can be updated without altering values in any of the parent
mappings.

Changed in version 1.5.5: The optional m parameter was added.

	
parents

	Property returning a new ChainMap containing all of the maps in the
current instance except the first one. This is useful for skipping the
first map in the search. Use cases are similar to those for the
nonlocal keyword used in nested scopes. A reference to d.parents is
equivalent to: ChainMap(*d.maps[1:]).

Note

Backported from Python 3.4. In Python 3.4 this is an alias.

	
class xoutil.future.collections.PascalSet(*others)

	Collection of unique integer elements (implemented with intervals).

PascalSet(*others) -> new set object

New in version 1.7.1.

	
class xoutil.future.collections.BitPascalSet(*others)

	Collection of unique integer elements (implemented with bit-wise sets).

BitPascalSet(*others) -> new bit-set object

New in version 1.7.1.

 xoutil.future.datetime - Basic date and time types

xoutil.future.datetime - Basic date and time types

This module extends the standard library’s datetime [https://docs.python.org/3.4/library/datetime.html#module-datetime]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

In Pytnon

 xoutil.future.functools - Higher-order functions and callable objects

xoutil.future.functools - Higher-order functions and callable objects

This module extends the standard library’s functools [https://docs.python.org/3.4/library/functools.html#module-functools]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added the following features.

	
class xoutil.future.functools.ctuple

	Simple tuple marker for compose().

Since is a callable you may use it directly in compose instead of
changing your functions to returns ctuples instead of tuples:

>>> def compat_print(*args):
... for arg in args:
... print(arg)

>>> compose(compat_print, ctuple, list, range, math=False)(3)
0
1
2

Without ctuple prints the list
>>> compose(compat_print, list, range, math=False)(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

	
xoutil.future.functools.compose(*funcs, math=True)

	Returns a function that is the composition of several callables.

By default compose behaves like mathematical function composition: this
is to say that compose(f1, ... fn) is equivalent to lambda _x:
fn(...(f1(_x))...).

If any “intermediate” function returns a ctuple it is expanded as
several positional arguments to the next function.

Changed in version 1.5.5: At least a callable must be passed, otherwise a
TypeError is raised. If a single callable is passed
it is returned without change.

	Parameters:	math – Indicates if compose should behave like mathematical
function composition: last function in funcs is applied
last. If False, then the last function in func is applied
first.

	
xoutil.future.functools.power(*funcs, times)

	Returns the “power” composition of several functions.

Examples:

>>> import operator
>>> f = power(partial(operator.mul, 3), 3)
>>> f(23) == 3*(3*(3*23))
True

>>> power(operator.neg)
Traceback (most recent call last):
...
TypeError: power() takes at least 2 arguments (1 given)

	
class xoutil.future.functools.lwraps(f, n, *, name=None, doc=None, wrapped=None)

	Lambda wrapper.

Useful for decorate lambda functions with name and documentation.

As positional arguments could be passed the function to be decorated and
the name in any order. So the next two identity definitions are
equivalents:

>>> from xoutil.future.functools import lwraps as lw

>>> identity = lw('identity', lambda arg: arg)

>>> identity = lw(lambda arg: arg, 'identity')

As keyword arguments could be passed some special values, and any number
of literal values to be assigned:

	name: The name of the function (__name__); only valid if not
given as positional argument.

	doc: The documentation (__doc__ field).

	wrapped: An object to extract all values not yet assigned. These
values are (‘__module__’, ‘__name__’ and ‘__doc__’) to be assigned, and
‘__dict__’ to be updated.

If the function to decorate is present in the positional arguments, this
same argument function is directly returned after decorated; if not a
decorator is returned similar to standard wraps().

For example:

>>> from xoutil.future.functools import lwraps as lw

>>> is_valid_age = lw('is-valid-human-age', lambda age: 0 < age <= 120,
... doc=('A predicate to evaluate if an age is '
... 'valid for a human being.')

>>> @lw(wrapped=is_valid_age)
... def is_valid_working_age(age):
... return 18 < age <= 70

>>> is_valid_age(16)
True

>>> is_valid_age(200)
False

>>> is_valid_working_age(16)
False

New in version 1.7.0.

	
xoutil.future.functools.curry(f)

	Return a function that automatically ‘curries’ is positional arguments.

Example:

>>> add = curry(lambda x, y: x + y)
>>> add(1)(2)
3

>>> add(1, 2)
3

>>> add()()()(1, 2)
3

We have backported several Python 3.3 features but maybe not all.

	
xoutil.future.functools.update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)

	Update a wrapper function to look like the wrapped function. The optional
arguments are tuples to specify which attributes of the original function
are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the
corresponding attributes from the original function. The default values
for these arguments are the module level constants WRAPPER_ASSIGNMENTS
(which assigns to the wrapper function’s __name__, __module__,
__annotations__ and __doc__, the documentation string) and
WRAPPER_UPDATES (which updates the wrapper function’s __dict__, i.e.
the instance dictionary).

To allow access to the original function for introspection and other
purposes (e.g. bypassing a caching decorator such as lru_cache()),
this function automatically adds a __wrapped__ attribute to the wrapper
that refers to the original function.

The main intended use for this function is in decorator functions which
wrap the decorated function and return the wrapper. If the wrapper
function is not updated, the metadata of the returned function will reflect
the wrapper definition rather than the original function definition, which
is typically less than helpful.

update_wrapper() may be used with callables other than functions.
Any attributes named in assigned or updated that are missing from the
object being wrapped are ignored (i.e. this function will not attempt to
set them on the wrapper function). AttributeError is still raised if the
wrapper function itself is missing any attributes named in updated.

 xoutil.future.inspect - Inspect live objects

xoutil.future.inspect - Inspect live objects

This module extends the standard library’s functools [https://docs.python.org/3.4/library/functools.html#module-functools]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added the following features.

	
xoutil.future.inspect.get_attr_value(obj, name, *default)

	Get a named attribute from an object in a safe way.

Similar to getattr but without triggering dynamic look-up via the
descriptor protocol, __getattr__ or __getattribute__ by using
getattr_static().

	
xoutil.future.inspect.type_name(*args, **kw)

	Return the internal name for a type or a callable.

This function is safe. If :param obj: is not an instance of a proper type
then returns the following depending on :param affirm:

	If False returns None.

	If True convert a single object to its type before returns the name,
but if is a tuple, list or set; returns a string with a representation
of contained types.

Examples:

>>> safe_name(int)
'int'

>>> safe_name(0) is None
True

>>> safe_name(0, affirm=True)
'int'

>>> safe_name((0, 1.1)) is None
True

>>> safe_name((0, 1.1), affirm=True)
'(int, float)'

We have backported several Python 3.3 features but maybe not all (some
protected structures are not presented in this documentation).

	
xoutil.future.inspect.getfullargspec(func)

	

	
xoutil.future.inspect.getattr_static(obj, attr, default=<object object>)

	Retrieve attributes without triggering dynamic lookup via the
descriptor protocol, __getattr__ or __getattribute__.

Note: this function may not be able to retrieve all attributes
that getattr can fetch (like dynamically created attributes)
and may find attributes that getattr can’t (like descriptors
that raise AttributeError). It can also return descriptor objects
instead of instance members in some cases. See the
documentation for details.

 xoutil.future.json - Encode and decode the JSON format

xoutil.future.json - Encode and decode the JSON format

This module extends the standard library’s json [https://docs.python.org/3.4/library/json.html#module-json]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added the following features.

	
class xoutil.future.json.JSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	Extensible JSON <http://json.org> encoder for Python data structures.

Supports the following objects and types by default:

	Python
	JSON

	dict
	object

	list, tuple
	array

	str, unicode
	string

	int, long, float
	number

	True
	true

	False
	false

	None
	null

To extend this to recognize other objects, subclass and implement a
.default() method with another method that returns a serializable
object for o if possible, otherwise it should call the superclass
implementation (to raise TypeError).

Xoutil extends this class by supporting the following data-types:

	datetime, date and time values, which are translated to strings
using ISO format.

	Decimal values, which are represented as a string representation.

	Iterables, which are represented as lists.

	
xoutil.future.json.encode_string(string, ensure_ascii=True)

	Return a JSON representation of a Python string.

	Parameters:	ensure_ascii – If True, the output is guaranteed to be of type
str with all incoming non-ASCII characters escaped. If False, the
output can contain non-ASCII characters.

 xoutil.future.pprint - Extension to the data pretty printer

xoutil.future.pprint - Extension to the data pretty printer

This modules includes all the Python’s standard library features in module
pprint [https://docs.python.org/3.4/library/pprint.html#module-pprint] and adds the function ppformat(), which just returns a
string of the pretty-formatted object.

New in version 1.4.1.

	
xoutil.future.pprint.ppformat(obj)

	Just like pprint() but always returning a result.

	Returns:	The pretty formated text.

	Return type:	unicode in Python 2, str in Python 3.

 xoutil.future.subprocess - Extensions to subprocess stardard module

xoutil.future.subprocess - Extensions to subprocess stardard module

New in version 1.2.1.

This module contains extensions to the subprocess [https://docs.python.org/3.4/library/subprocess.html#module-subprocess] standard library
module. It may be used as a replacement of the standard.

	
xoutil.future.subprocess.call_and_check_output(args, *, stdin=None, shell=False)

	This function combines the result of both call and check_output (from
the standard library module).

Returns a tuple (retcode, output, err_output).

 xoutil.future.textwrap - Text wrapping and filling

xoutil.future.textwrap - Text wrapping and filling

This module extends the standard library’s textwrap [https://docs.python.org/3.4/library/textwrap.html#module-textwrap]. You may use it as
a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added the following features.

	
xoutil.future.textwrap.dedent(text, skip_firstline=False)

	Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge
of the display, while still presenting them in the source code in indented
form.

Note that tabs and spaces are both treated as whitespace, but they are not
equal: the lines "

 xoutil.future.threading - Higher-level threading interface

xoutil.future.threading - Higher-level threading interface

This module extends the standard library’s threading [https://docs.python.org/3.4/library/threading.html#module-threading]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added the following features.

	
xoutil.future.threading.async_call(func, args=None, kwargs=None, callback=None, onerror=None)

	Executes a function asynchronously.

The function receives the given positional and keyword arguments

If callback is provided, it is called with a single positional argument:
the result of calling func(*args, **kwargs).

If the called function ends with an exception and onerror is provided, it
is called with the exception object.

	Returns:	An event object that gets signalled when the function ends its
execution whether normally or with an error.

	Return type:	Event

	
xoutil.future.threading.sync_call(funcs, callback, timeout=None)

	Calls several functions, each one in it’s own thread.

Waits for all to end.

Each time a function ends the callback is called (wrapped in a lock to
avoid race conditions) with the result of the as a single positional
argument.

If timeout is not None it sould be a float number indicading the seconds
to wait before aborting. Functions that terminated before the timeout will
have called callback, but those that are still working will be ignored.

Todo

Abort the execution of a thread.

	Parameters:	funcs – A sequences of callables that receive no arguments.

 xoutil.future.types - Names for built-in types and extensions

xoutil.future.types - Names for built-in types and extensions

This module extends the standard library’s functools [https://docs.python.org/3.4/library/functools.html#module-functools]. You may use it
as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7
and Python 3.3.

We added mainly compatibility type definitions, those that each one could be in one
version and not in other.

	
xoutil.future.types.new_class(name, bases=(), kwds=None, exec_body=None)

	Create a class object dynamically using the appropriate metaclass.

New in version 1.5.5.

	
xoutil.future.types.prepare_class(name, bases=(), kwds=None)

	Call the __prepare__ method of the appropriate metaclass.

Returns (metaclass, namespace, kwds) as a 3-tuple

metaclass is the appropriate metaclass
namespace is the prepared class namespace
kwds is an updated copy of the passed in kwds argument with any
‘metaclass’ entry removed. If no kwds argument is passed in, this will
be an empty dict.

New in version 1.5.5.

	
xoutil.future.types.DictProxyType

	alias of dictproxy

	
class xoutil.future.types.MappingProxyType

	
New in version 1.5.5.

Read-only proxy of a mapping. It provides a dynamic view on the mapping’s
entries, which means that when the mapping changes, the view reflects these
changes.

Note

In Python 3.3+ this is an alias for
types.MappingProxyType [https://docs.python.org/3.4/library/types.html#types.MappingProxyType] in the standard library.

	
class xoutil.future.types.SimpleNamespace

	
New in version 1.5.5.

A simple object [https://docs.python.org/3.4/library/functions.html#object] subclass that provides attribute access to its
namespace, as well as a meaningful repr.

Unlike object [https://docs.python.org/3.4/library/functions.html#object], with SimpleNamespace you can add and remove
attributes. If a SimpleNamespace object is initialized with keyword
arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace(object):
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)
 def __repr__(self):
 keys = sorted(self.__dict__)
 items = ("{}={!r}".format(k, self.__dict__[k]) for k in keys)
 return "{}({})".format(type(self).__name__, ", ".join(items))
 def __eq__(self, other):
 return self.__dict__ == other.__dict__

SimpleNamespace may be useful as a replacement for class NS: pass.
However, for a structured record type use namedtuple() [https://docs.python.org/3.4/library/collections.html#collections.namedtuple]
instead.

Note

In Python 3.4+ this is an alias to
types.SimpleNamespace [https://docs.python.org/3.4/library/types.html#types.SimpleNamespace].

	
class xoutil.future.types.DynamicClassAttribute(fget=None, fset=None, fdel=None, doc=None)

	Route attribute access on a class to __getattr__() [https://docs.python.org/3.4/reference/datamodel.html#object.__getattr__].

This is a descriptor, used to define attributes that act differently
when accessed through an instance and through a class. Instance
access remains normal, but access to an attribute through a class will
be routed to the class’s __getattr__() [https://docs.python.org/3.4/reference/datamodel.html#object.__getattr__] method;
this is done by raising AttributeError [https://docs.python.org/3.4/library/exceptions.html#AttributeError].

This allows one to have properties active on an instance, and have
virtual attributes on the class with the same name (see
Enum [https://docs.python.org/3.4/library/enum.html#enum.Enum] for an example).

New in version 1.5.5.

Changed in version 1.8.0: Inherits from property

Note

The class Enum mentioned has not yet been back-ported.

Note

In Python version>=3.4 this is an alias to
types.DynamicClassAttribute.

 xoutil.html – Helpers for manipulating HTML

xoutil.html – Helpers for manipulating HTML

Deprecated since version 1.8.0.

This module defines utilities to manipulate HTML.

This module backports several utilities from Python 3.2.

Because now we deprecated it, we moved here documentation to remove it in one
shot.

xoutil.html.entities – Definitions of HTML general entities

This module defines tree dictionaries, name2codepoint, codepoint2name,
and entitydefs.

entitydefs is used to provide the entitydefs attribute of the
xoutil.html.parser.HTMLParser class. The definition provided here
contains all the entities defined by XHTML 1.0 that can be handled using
simple textual substitution in the Latin-1 character set (ISO-8859-1).

	
xoutil.html.entitydefs

	A dictionary mapping XHTML 1.0 entity definitions to their replacement text
in ISO Latin-1.

	
xoutil.html.name2codepoint

	A dictionary that maps HTML entity names to the Unicode codepoints.

	
xoutil.html.codepoint2name

	A dictionary that maps Unicode codepoints to HTML entity names

xoutil.html.parser – A simple parser that can handle HTML and XHTML

This module defines a class HTMLParser which serves as the basis for parsing
text files formatted in HTML (HyperText Mark-up Language) and XHTML.

Warning

This module has not being made Python 2.7 and 3.2 compatible.

	
class xoutil.html.HTMLParser(strict=True)

	Create a parser instance. If strict is True (the default), invalid HTML
results in HTMLParseError exceptions [1]. If strict is False, the
parser uses heuristics to make a best guess at the intention of any invalid
HTML it encounters, similar to the way most browsers do. Using strict=False
is advised.

An :class`HTMLParser` instance is fed HTML data and calls handler methods
when start tags, end tags, text, comments, and other markup elements are
encountered. The user should subclass HTMLParser and override its methods to
implement the desired behavior.

This parser does not check that end tags match start tags or call the
end-tag handler for elements which are closed implicitly by closing an outer
element.

Changed in version 3.2: strict keyword added

	
class xoutil.html.HTMLParseError

	Exception raised by the HTMLParser class when it encounters an
error while parsing and strict is True. This exception provides three
attributes: msg is a brief message explaining the error, lineno is the
number of the line on which the broken construct was detected, and offset is
the number of characters into the line at which the construct starts.

	
xoutil.html.escape(s, quote=True)

	Replace special characters “&”, “<” and “>” to HTML-safe sequences

If the optional flag quote is true (the default), the quotation mark
characters, both double quote (”) and single quote (‘) characters are
also translated.

Sub-modules on this package

	xoutil.html.entities – Definitions of HTML general entities

	xoutil.html.parser – A simple parser that can handle HTML and XHTML

 xoutil.html.entities – Definitions of HTML general entities

xoutil.html.entities – Definitions of HTML general entities

This module defines tree dictionaries, name2codepoint, codepoint2name,
and entitydefs.

entitydefs is used to provide the entitydefs attribute of the
xoutil.html.parser.HTMLParser class. The definition provided here
contains all the entities defined by XHTML 1.0 that can be handled using simple
textual substitution in the Latin-1 character set (ISO-8859-1).

	
xoutil.html.entities.entitydefs

	A dictionary mapping XHTML 1.0 entity definitions to their replacement text
in ISO Latin-1.

	
xoutil.html.entities.name2codepoint

	A dictionary that maps HTML entity names to the Unicode codepoints.

	
xoutil.html.entities.codepoint2name

	A dictionary that maps Unicode codepoints to HTML entity names

 xoutil.html.parser – A simple parser that can handle HTML and XHTML

xoutil.html.parser – A simple parser that can handle HTML and XHTML

This module defines a class HTMLParser which serves as the basis for parsing
text files formatted in HTML (HyperText Mark-up Language) and XHTML.

Warning

This module has not being made Python 2.7 and 3.2 compatible.

	
class xoutil.html.parser.HTMLParser(strict=True)

	Create a parser instance. If strict is True (the default), invalid HTML
results in HTMLParseError exceptions [1]. If strict is False, the
parser uses heuristics to make a best guess at the intention of any invalid
HTML it encounters, similar to the way most browsers do. Using strict=False
is advised.

An :class`HTMLParser` instance is fed HTML data and calls handler methods
when start tags, end tags, text, comments, and other markup elements are
encountered. The user should subclass HTMLParser and override its methods to
implement the desired behavior.

This parser does not check that end tags match start tags or call the
end-tag handler for elements which are closed implicitly by closing an outer
element.

Changed in version 3.2: strict keyword added

	
class xoutil.html.parser.HTMLParseError

	Exception raised by the HTMLParser class when it encounters an
error while parsing and strict is True. This exception provides three
attributes: msg is a brief message explaining the error, lineno is the
number of the line on which the broken construct was detected, and offset is
the number of characters into the line at which the construct starts.

 xoutil.infinity - An infinite value

xoutil.infinity - An infinite value

	
xoutil.infinity.Infinity

	The positive infinite value. The negative infinite value is -Infinity.

These values are only sensible for comparison. Arithmetic is not
supported.

The type of values that is comparable with Infinity is controlled by
the ABC InfinityComparable.

	
class xoutil.infinity.InfinityComparable

	Any type that can be sensibly compared to infinity.

All types in the number [https://docs.python.org/3.4/library/numbers.html#numbers.Number] tower are always
comparable.

Classes datetime.date [https://docs.python.org/3.4/library/datetime.html#datetime.date], datetime.datetime [https://docs.python.org/3.4/library/datetime.html#datetime.datetime], and
datetime.timedelta [https://docs.python.org/3.4/library/datetime.html#datetime.timedelta] are automatically registered.

 xoutil.iterators - Functions creating iterators for efficient looping

xoutil.iterators - Functions creating iterators for efficient looping

Several util functions for iterators

	
xoutil.iterators.dict_update_new(target, source, fail=False)

	Update values in source that are new (not present) in target.

If fail is True and a value is already set, an error is raised.

	
xoutil.iterators.first_n(iterable, n=1, fill=Unset)

	Takes the first n items from iterable.

If there are less than n items in the iterable and fill is
Unset, a StopIteration exception is raised; otherwise
it’s used as a filling pattern as explained below.

	Parameters:	
	iterable – An iterable from which the first n items should be
collected.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – The number of items to collect

	fill – The filling pattern to use. It may be:

	a collection, in which case first_n fills the last items
by cycling over fill.

	anything else is used as the filling pattern by repeating.

	Returns:	The first n items from iterable, probably with a filling
pattern at the end.

	Return type:	generator object

New in version 1.2.0.

Changed in version 1.4.0: The notion of collection for the fill argument
uses xoutil.types.is_collection() instead of
probing for the __iter__ method.

Changed in version 1.7.2: The notion of collection for the fill argument
uses isinstance(fill, Iterable) replacing
xoutil.types.is_collection(). We must be
consistent with iterable argument that allow an
string as a valid iterable and is_collection not.

	
xoutil.iterators.first_non_null(iterable, default=None)

	Returns the first value from iterable which is non-null.

This is roughly the same as:

next((x for x in iter(iterable) if x), default)

New in version 1.4.0.

	
xoutil.iterators.slides(iterable, width=2, fill=None)

	Creates a sliding window of a given width over an iterable:

>>> list(slides(range(1, 11)))
[(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]

If the iterator does not yield a width-aligned number of items, the last
slice returned is filled with fill (by default None):

>>> list(slides(range(1, 11), width=3))
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, None, None)]

Changed in version 1.4.0: If the fill argument is a collection is cycled
over to get the filling, just like in first_n().

Changed in version 1.4.2: The fill argument now defaults to None,
instead of Unset.

	
xoutil.iterators.continuously_slides(iterable, width=2, fill=None)

	Similar to slides() but moves one item at the time (i.e
continuously).

fill is only used to fill the fist chunk if the iterable has less
items than the width of the window.

Example (generate a texts tri-grams):

>>> slider = continuously_slides(str('maupassant'), 3)
>>> list(str('').join(chunk) for chunk in slider)
['mau', 'aup', 'upa', 'pas', 'ass', 'ssa', 'san', 'ant']

	
xoutil.iterators.ungroup(iterator)

	Reverses the operation of itertools.groupby() [https://docs.python.org/3.4/library/itertools.html#itertools.groupby] (or similar).

The iterator should produce pairs of (_,

 xoutil.keywords – Tools for manage Python keywords as names

xoutil.keywords – Tools for manage Python keywords as names

Tools for manage Python keywords as names.

Reserved Python keywords can’t be used as attribute names, so this module
functions use the convention of rename the name using an underscore as
suffix when a reserved keyword is used as name.

	
xoutil.keywords.delkwd(obj, name)

	Like delattr but taking into account Python keywords.

	
xoutil.keywords.getkwd(obj, name, default=None)

	Like getattr but taking into account Python keywords.

	
xoutil.keywords.kwd_deleter(obj)

	partial(delkwd, obj)

	
xoutil.keywords.kwd_getter(obj)

	partial(getkwd, obj)

	
xoutil.keywords.kwd_setter(obj)

	partial(setkwd, obj)

	
xoutil.keywords.org_kwd(name)

	Remove the underscore suffix if name starts with a Python keyword.

	
xoutil.keywords.setkwd(obj, name, value)

	Like setattr but taking into account Python keywords.

	
xoutil.keywords.suffix_kwd(name)

	Add an underscore suffix if name if a Python keyword.

 xoutil.logger - Standard logger helpers

xoutil.logger - Standard logger helpers

Usage:

logger.debug('Some debug message')

Basically you may request any of the loggers attribute/method and this
module will return the logger’s attribute corresponding to the loggers of
the calling module. This avoids the boilerplate seen in most codes:

logger = logging.getLogger(__name__)

You may simply do:

from xoutil.logger import debug
debug('Some debug message')

The proper logger will be selected by this module.

Note

Notice this won’t configure any handler for you. Only the calling
pattern is affected. You must configure your loggers as usual.

 xoutil.modules – Utilities for working with modules

xoutil.modules – Utilities for working with modules

Modules utilities.

	
xoutil.modules.copy_members(source=None, target=None)

	Copy module members from source to target.

It’s common in xoutil package to extend Python modules with the same
name, for example xoutil.datetime has all public members of Python’s
datetime. copy_members() can be used to copy all members from the
original module to the extended one.

	Parameters:	
	source – string with source module name or module itself.

If not given, is ass