
xoutil Documentation
Release 1.8.0

Merchise

Oct 31, 2017

Contents

1 What’s new in 1.8.0 3

2 Contents 7

3 Indices and tables 135

Python Module Index 137

i

ii

xoutil Documentation, Release 1.8.0

Collection of disparate utilities.

xoutil is essentially an extension to the Python’s standard library, it does not turn into a full framework, but it’s very
useful to be used from a diversity of scenarios where compatibility is an important issue.

Contents 1

xoutil Documentation, Release 1.8.0

2 Contents

CHAPTER 1

What’s new in 1.8.0

• Remove deprecated xoutil.objects.metaclass, use xoutil.eight.meta.metaclass() in-
stead.

• Several modules are migrated to xoutil.future:

– types.

– collections.

– datetime.

– functools.

– inspect.

– codecs.

– json.

– threading.

– subprocess.

– pprint.

– textwrap.

• Add function xoutil.deprecation.import_deprecated(), inject_deprecated() can be
deprecated now.

• Add function xoutil.deprecation.deprecate_linked() to deprecate full modules imported from
a linked version. The main example are all sub-modules of xoutil.future.

• Add function xoutil.deprecation.deprecate_module() to deprecate full modules when imported.

• Remove the module xoutil.string in favor of:

– xoutil.future.codecs: Moved here functions force_encoding(), safe_decode(), and
safe_encode().

– xoutil.eight.string: Technical string handling. In this module:

3

xoutil Documentation, Release 1.8.0

* force(): Replaces old safe_str, and force_str versions.

* safe_join(): Replaces old version in future module. This function is useless, it’s equivalent
to:

force(vale).join(force(item) for item in iterator)

* force_ascii(): Replaces old normalize_ascii. This function is safe and the result will be
of standard str type containing only equivalent ASCII characters from the argument.

– xoutil.eight.text: Text handling, strings can be part of internationalization processes. In this
module:

* force(): Replaces old safe_str, and force_str versions, but always returning the text type.

* safe_join(): Replaces old version in future module, but in this case always return the text
type. This function is useless, it’s equivalent to:

force(vale).join(force(item) for item in iterator)

– capitalize_word function was completely removed, use instead standard method word.
capitalize().

– Functions capitalize, normalize_name, normalize_title, normalize_str,
parse_boolean, parse_url_int were completely removed.

– normalize_unicode was completely removed, it’s now replaced by xoutil.eight.text.
force().

– hyphen_name was moved to xoutil.cli.tools.

– strfnumber was moved as an internal function of ‘xoutil.future.datetime’:mod: module.

– Function normalize_slug is now deprecated. You should use now slugify().

• Create __small__ protocol for small string representations, see xoutil.string.small() for more in-
formation.

• Remove xoutil.connote that was introduced provisionally in 1.7.1.

• Module xoutil.params was introduced provisionally in 1.7.1, but now has been fully recovered.

– Add function issue_9137() – Helper to fix issue 9137 (self ambiguity).

– Add function check_count() – Checker for positional arguments actual count against constrains.

– Add function check_default() – Default value getter when passed as a last excess positional argu-
ment.

– Add function single() – Return true only when a unique argument is given.

– Add function keywords_only() – Decorator to make a function to accepts its keywords arguments as
keywords-only.

– Add function pop_keyword_arg() – Tool to get a value from keyword arguments using several pos-
sible names.

– Add class ParamManager – Parameter manager in a “smart” way.

– Add class ParamScheme – Parameter scheme definition for a manager.

– Add class ParamSchemeRow – Parameter scheme complement.

– Remove xoutil.params.ParamConformer.

4 Chapter 1. What’s new in 1.8.0

xoutil Documentation, Release 1.8.0

• Module xoutil.values was recovered adding several new features (old name xoutil.cl was depre-
cated).

• Add experimental module xoutil.fp for Functional Programming stuffs.

• Add experimental module xoutil.tasking.

• Remove deprecated module xoutil.data. Add xoutil.objects.adapt_exception().

• Remove deprecated xoutil.dim.meta.Signature.isunit().

5

xoutil Documentation, Release 1.8.0

6 Chapter 1. What’s new in 1.8.0

CHAPTER 2

Contents

xoutil – Collection of tools. Top-level imports

xoutil.Unset = Unset
False value, mainly for function parameter definitions, where None could be a valid value.

xoutil.Undefined = Undefined
False value for local scope use or where Unset could be a valid value

xoutil.Ignored = Ignored
To be used in arguments that are currently ignored because they are being deprecated. The only valid reason to
use Ignored is to signal ignored arguments in method’s/function’s signature

xoutil.annotate - Py3k compatible annotations for Python 2

Provides Python 3k forward-compatible (PEP 3107) annotations.

Note: The signature argument for the annotate() in this module may not work on other python implementations
than CPython. Currently, Pypy passes all but local variable tests.

xoutil.annotate.annotate(signature=None, **annotations)
Annotates a function with a Python 3k forward-compatible __annotations__ mapping.

See PEP 3107 for more details about annotations.

Parameters

• signature –

A string with the annotated signature of the decorated function.

This string should follow the annotations syntax in PEP 3107. But there are several
deviations from the PEP text:

7

https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-3107

xoutil Documentation, Release 1.8.0

– There’s no support for the full syntax of Python 2 expressions; in particular nested argu-
ments are not supported since they are deprecated and are not valid in Py3k.

– Specifying defaults is no supported (nor needed). Defaults are placed in the signature of
the function.

– In the string it makes no sense to put an argument without an annotation, so this will raise
an exception (SyntaxError).

• keyword_annotations – These are each mapped to a single annotation.

Since you can’t include the ‘return’ keyword argument for the annotation related with the
return of the function, we provide several alternatives: if any of the following keywords
arguments is provided (tested in the given order): ‘return_annotation’, ‘_return’, ‘__return’;
then it will be considered the ‘return’ annotation, the rest will be regarded as other annota-
tions.

In any of the previous cases, you may provide more (or less) annotations than possible by following the PEP
syntax. This is not considered an error, since the PEP allows annotations to be modified by others means.

If you provide a signature string and keywords annotations, the keywords will take precedence over the signa-
ture:

>>> @annotate('() -> list', return_annotation=tuple)
... def otherfunction():
... pass

>>> otherfunction.__annotations__.get('return') is tuple
True

When parsing the signature the locals and globals in the context of the declaration are taken into account:

>>> interface = object # let's mock of ourselves
>>> class ISomething(interface):
... pass

>>> @annotate('(a: ISomething) -> ISomething')
... def somewhat(a):
... return a

>>> somewhat.__annotations__.get('a')
<class '...ISomething'>

xoutil.bases - Numeric base 32 and base 64 integer representa-
tions

Integer encoding and decoding in different bases.

xoutil.bases.int2str(number, base=62)
Return the string representation of an integer using a base.

Parameters base (Either an integer or a string with a custom table.) –
The base.

Examples:

8 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> int2str(65535, 16)
'ffff'

>>> int2str(65535)
'h31'

>>> int2str(65110208921, 'merchise')
'ehimseiemsce'

>>> int2str(651102, 2)
'10011110111101011110'

xoutil.bases.str2int(src, base=62)
Return the integer decoded from a string representation using a base.

Parameters base (Either an integer or a string with a custom table.) –
The base.

Examples:

>>> str2int('ffff', 16)
65535

>>> str2int('1c', 16) == int('1c', 16)
True

>>> base = 'merchise'
>>> number = 65110208921
>>> str2int(int2str(number, base), base) == number
False

>>> base = 32
>>> str2int(int2str(number, base), base) == number
True

class xoutil.bases.B32
Handles base-32 conversions.

In base 32, each 5-bits chunks are represented by a single “digit”. Digits comprises all symbols in 0..9 and a..v.

>>> B32.inttobase(32) == '10'
True

>>> B32.basetoint('10')
32

class xoutil.bases.B64
Handles [a kind of] base 64 conversions.

This is not standard base64, but a reference-friendly base 64 to help the use case of generating a
short reference.

In base 64, each 6-bits chunks are represented by a single “digit”. Digits comprises all symbols in
0..9, a..z, A..Z and the three symbols: ()[.

>>> B64.inttobase(64) == '10'
True

2.3. xoutil.bases - Numeric base 32 and base 64 integer representations 9

xoutil Documentation, Release 1.8.0

>>> B64.basetoint('10')
64

Warning: In this base, letters are case sensitive:

>>> B64.basetoint('a')
10

>>> B64.basetoint('A')
36

xoutil.bound – Helpers for bounded execution of co-routines

New in version 1.6.3.

A bounded execution model

Some features are easy to implement using a generator or co-routine (PEP 342). For instance, you might want
to “report units of work” one at a time. These kind of features could be easily programmed without any bounds
whatsoever, and then you might “weave” the bounds.

This module helps to separate the work-doing function from the boundary-tests definitions.

This document uses the following terminology:

unbounded function This is the function that does the actual work without testing for any boundary condition.
Boundary conditions are not “natural causes” of termination for the algorithm but conditions imposed elsewhere:
the environment, resource management, etc.

This function must return a generator, called the unbounded generator.

unbounded generator The generator returned by an unbounded function. This generator is allowed to yield forever,
although it could terminate by itself. So this is actually a possibly unbounded generator, but we keep the term to
emphasize.

boundary condition It’s a condition that does not belong to the logical description of any algorithm. When this
condition is met it indicates that the unbounded generator should be closed. The boundary condition is tested
each time the unbounded generator yields.

A boundary condition is usually implemented in a single function called the boundary definition.

boundary definition A function that implements a boundary condition. This function must comply with the bound-
ary protocol (see boundary()).

Sometimes we identify the boundary condition with its boundary definition.

bounded function It’s the result of applying a boundary definition to an unbounded function.

bounded generator It’s the result of applying a boundary condition to an unbounded generator.

The bounded execution model takes at least an unbounded generator and a boundary condition. Applying the boundary
condition to the unbounded generator ultimately results in a bounded generator, which will behave almost equivalently
to the unbounded generator but will stop when the boundary condition yields True or when the unbounded generator
itself is exhausted.

10 Chapter 2. Contents

https://www.python.org/dev/peps/pep-0342

xoutil Documentation, Release 1.8.0

Included boundary conditions

xoutil.bound.timed(maxtime)
Becomes True after a given amount of time.

The bounded generator will be allowed to yields values until the maxtime time frame has elapsed.

Usage:

@timed(timedelta(seconds=60))
def do_something_in_about_60s():

while True:
yield

Note: This is a very soft limit.

We can’t actually guarrant any enforcement of the time limit. If the bounded generator takes too much time or
never yields this predicated can’t do much. This usually helps with batch processing that must not exceed (by
too much) a given amount of time.

The timer starts just after the next() function has been called for the predicate initialization. So if the max-
time given is too short this predicated might halt the execution of the bounded function without allowing any
processing at all.

If maxtime is not a timedelta, the timedelta will be computed as timedelta(seconds=maxtime).

xoutil.bound.times(n)
Becomes True after a given after the nth item have been produced.

xoutil.bound.accumulated(mass, *attrs, initial=0)
Becomes True after accumulating a given “mass”.

mass is the maximum allowed to accumulate. This is usually a positive number. Each value produced by the
unbounded generator is added together. Yield True when this amount to more than the given mass.

If any attrs are provided, they will be considered attributes (or keys) to search inside the yielded data from the
bounded function. If no attrs are provided the whole data is accumulated, so it must allow addition. The attribute
to be summed is extracted with get_first_of(), so only the first attribute found is added.

If the keyword argument initial is provided the accumulator is initialized with that value. By default this is 0.

xoutil.bound.pred(func, skipargs=True)
Allow “normal” functions to engage within the boundary protocol.

func should take a single argument and return True if the boundary condition has been met.

If skipargs is True then function func will not be called with the tuple (args, kwargs) upon initialization
of the boundary, in that case only yielded values from the unbounded generator are passed. If you need to get
the original arguments, set skipargs to False, in this case the first time func is called will be passed a single
argument (arg, kwargs).

Example:

>>> @pred(lambda x: x > 10)
... def fibonacci():
... a, b = 1, 1
... while True:
... yield a
... a, b = b, a + b

2.4. xoutil.bound – Helpers for bounded execution of co-routines 11

xoutil Documentation, Release 1.8.0

>>> fibonacci()
13

xoutil.bound.until_errors(*errors)
Becomes True after any of errors has been raised.

Any other exceptions (except GeneratorExit) is propagated. You must pass at least an error.

Normally this will allow some possibly long jobs to be interrupted (SoftTimeLimitException in celery task, for
instance) but leave some time for the caller to clean up things.

It’s assumed that your job can be properly finalized after any of the given exceptions has been raised.

Parameters on_error – A callable that will only be called if the boundary condition is ever met,
i.e if any of errors was raised. The callback is called before yielding True.

New in version 1.7.2.

Changed in version 1.7.5: Added the keyword argument on_error.

xoutil.bound.until(time=None, times=None, errors=None)
An idiomatic alias to other boundary definitions.

•until(maxtime=n) is the same as timed(n).

•until(times=n) is the same as times(n).

•until(pred=func, skipargs=skip) is the same as pred(func, skipargs=skip).

•until(errors=errors, **kwargs) is the same as until_errors(*errors,

**kwargs).

•until(accumulate=mass, path=path, initial=initial) is the same as
accumulated(mass, *path.split('.'), initial=initial)

Warning: You cannot mix many calls.

New in version 1.7.2.

Chaining several boundary conditions

To created a more complex boundary than the one provided by a single condition you could use the following high-
level boundaries:

xoutil.bound.whenany(*boundaries)
An OR-like boundary condition.

It takes several boundaries and returns a single one that behaves like the logical OR, i.e, will yield True when
any of its subordinate boundary conditions yield True.

Calls close() of all subordinates upon termination.

Each boundary should be either:

•A “bare” boundary definition that takes no arguments.

•A boundary condition (i.e an instance of BoundaryCondition). This is result of calling a boundary
definition.

•A generator object that complies with the boundary protocol. This cannot be tested upfront, a misbehaving
generator will cause a RuntimeError if a boundary protocol rule is not followed.

12 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Any other type is a TypeError.

xoutil.bound.whenall(*boundaries)
An AND-like boundary condition.

It takes several boundaries and returns a single one that behaves like the logical AND i.e, will yield True when
all of its subordinate boundary conditions have yielded True.

It ensures that once a subordinate yields True it won’t be sent more data, no matter if other subordinates keep
on running and consuming data.

Calls close() of all subordinates upon termination.

Each boundary should be either:

•A “bare” boundary definition that takes no arguments.

•A boundary condition (i.e an instance of BoundaryCondition). This is result of calling a boundary
definition.

•A generator object that complies with the boundary protocol. This cannot be tested upfront, a misbehaving
generator will cause a RuntimeError if a boundary protocol rule is not followed.

Any other type is a TypeError.

Defining boundaries

If none of the boundaries defined deals with a boundary condition you have, you may create another one using
boundary(). This is usually employed as decorator on the boundary definition.

xoutil.bound.boundary(definition)
Helper to define a boundary condition.

The definition must be a function that returns a generator. The following rules must be followed. Collectively
these rules are called the boundary protocol.

•The boundary definition will yield True when and only when the boundary condition is met. Only the
value True will signal the boundary condition.

•The boundary definition must yield at least 2 times:

–First it will be called its next() method to allow for initialization of internal state.

–Immediately after, it will be called its send() passing the tuple (args, kwargs) with the argu-
ments passed to the unbounded function. At this point the boundary definition may yield True to halt
the execution. In this case, the unbounded generator won’t be asked for any value.

•The boundary definition must yield True before terminating with a StopIteration. For instance the follow-
ing definition is invalid cause it ends without yielding True:

@boundary
def invalid():

yield
yield False

•The boundary definition must deal with GeneratorExit exceptions properly since we call the close()
method of the generator upon termination. Termination occurs when the unbounded generator stops by
any means, even when the boundary condition yielded True or the generator itself is exhausted or there’s
an error in the generator.

Both whenall() and whenany() call the close() method of all their subordinate boundary condi-
tions.

2.4. xoutil.bound – Helpers for bounded execution of co-routines 13

xoutil Documentation, Release 1.8.0

Most of the time this reduces to not catching GeneratorExit exceptions.

A RuntimeError may happen if any of these rules is not followed by the definition. Furthermore, this error will
occur when invoking the bounded function and not when applying the boundary to the unbounded generator.

Illustration of a boundary

Let’s explain in detail the implementation of times() as an example of how a boundary condition could be imple-
mented.

1 @boundary
2 def times(n):
3 '''Becomes True after the `nth` item have been produced.'''
4 passed = 0
5 yield False
6 while passed < n:
7 yield False
8 passed += 1
9 yield True

We implemented the boundary condition via the boundary() helper. This helpers allows to implement the boundary
condition via a boundary definition (the function above). The boundary helper takes the definition and builds a
BoundaryCondition instance. This instance can then be used to decorate the unbounded function, returning a
bounded function (a Bounded instance).

When the bounded function is called, what actually happens is that:

• First the boundary condition is invoked passing the n argument, and thus we obtain the generator from the
times function.

• We also get the generator from the unbounded function.

• Then we call next(boundary) to allow the times boundary to initialize itself. This runs the code of the
times definition up to the line 5 (the first yield statement).

• The bounded function ignores the message from the boundary at this point.

• Then it sends the arguments passed to original function via the send() method of the boundary condition
generator.

• This unfreezes the boundary condition that now tests whether passes is less that n. If this is true, the boundary
yields False and suspends there at line 7.

• The bounded function see that message is not True and asks the unbounded generator for its next value.

• Then it sends that value to the boundary condition generator, which resumes execution at line 8. The value sent
is ignored and passes gets incremented by 1.

• Again the generator asks if passes is less that n. If passes has reached n, it will execute line 9, yielding True.

• The bounded function see that the boundary condition is True and calls the close() method to the boundary
condition generator.

• This is like raising a GeneratorExit just after resuming the times below line 9. The error is not trapped and
propagates the close() method of the generator knows this means the generator has properly finished.

Note: Other boundaries might need to deal with GeneratorExit explicitly.

14 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

• Then the bounded function regains control and calls the close() method of the unbounded generator, this
effectively raises a GeneratorExit inside the unbounded generator, which if untreated means everything went
well.

If you look at the implementation of the included boundary conditions, you’ll see that all have the same pattern:

1. Initialization code, followed by a yield False statement. This is a clear indicator that the included boundary
conditions disregard the first message (the arguments to the unbounded function).

2. A looping structure that tests the condition has not been met and yields False at each cycle.

3. The yield True statement outside the loop to indicate the boundary condition has been met.

This pattern is not an accident. Exceptionally whenall() and whenany() lack the first standalone yield False
because they must not assume all its subordinate predicates will ignore the first message.

Internal API

class xoutil.bound.Bounded(target)
The bounded function.

This is the result of applying a boundary definition to an unbounded function (or generator).

If target is a function this instance can be called several times. If it’s a generator then it will be closed after
either calling (__call__) this instance, or consuming the generator given by generate().

This class is actually subclassed inside the apply() so that the weaving boundary definition with the target
unbounded function is not exposed.

__call__(*args, **kwargs)
Return the last value from the underlying bounded generator.

generate(*args, **kwargs)
Return the bounded generator.

This method exposes the bounded generator. This allows you to “see” all the values yielded by the un-
bounded generator up to the point when the boundary condition is met.

class xoutil.bound.BoundaryCondition(definition, name=None, errors=None)
Embodies the boundary protocol.

The definition argument must a function that implements a boundary definition. This function may take argu-
ments to initialize the state of the boundary condition.

Instances are callables that will return a Bounded subclass specialized with the application of the boundary
condition to a given unbounded function (target). For instance, times(6) returns a class, that when instanti-
ated with a target represents the bounded function that takes the 6th valued yielded by target.

If the definition takes no arguments for initialization you may pass the target directly. This is means that if
__call__() receives arguments they will be used to instantiate the Bounded subclass, ie. this case allows
only a single argument target.

If errors is not None it should be a tuple of exceptions to catch and throw inside the boundary condition def-
inition. Other exceptions, beside GeneratorExit and StopIteration, are not handled (so the bubble up). See
until_error().

An example: time bounded batch processing

We have a project in which we need to send emails inside a cron task (celery is not available). Emails to be sent are
placed inside an Outbox but we may only spent about 60 seconds to send as many emails as we can. If our emails are

2.4. xoutil.bound – Helpers for bounded execution of co-routines 15

http://docs.celeryproject.org/

xoutil Documentation, Release 1.8.0

reasonably small (i.e will be delivered to the SMTP server in a few miliseconds) we could use the timed() predicate
to bound the execution of the task:

@timed(50)
def send_emails():

outbox = Outbox.open()
try:

for message in outbox:
emailbackend.send(message)
outbox.remove(message)
yield message

except GeneratorExit:
This means the time we were given is off.
pass

finally:
outbox.close() # commit the changes to the outbox

Notice that you must enclose your batch-processing code in a try statement if you need to somehow commit changes.
Since we may call the close() method of the generator to signal that it must stop.

A finally clause is not always appropriated cause an error that is not GeneratorExit error should not commit the
data unless you’re sure data changes that were made before the error could be produced. In the code above the only
place in the code above where an error could happen is the sending of the email, and the data is only touched for each
email that is actually sent. So we can safely close our outbox and commit the removal of previous message from the
outbox.

Using the Bounded.generate() method

Calling a bounded generator simply returns the last valued produced by the unbounded generator, but sometimes
you need to actually see all the values produced. This is useful if you need to meld several generators with partially
overlapping boundary conditions.

Let’s give an example by extending a bit the example given in the previous section. Assume you now need to extend
your cron task to also read an Inbox as much as it can and then send as many messages as it can. Both things should
be done under a given amount of time, however the accumulated size of sent messages should not surpass a threshold
of bytes to avoid congestion.

For this task you may use both timed() and accumulated(). But you must apply accumulated() only to
the process of sending the messages and the timed boundary to the overall process.

This can be accomplished like this:

1 def communicate(interval, bandwidth):
2 from itertools import chain as meld
3

4 def receive():
5 for message in Inbox.receive():
6 yield message
7

8 @accumulated(bandwith, 'size')
9 def send():

10 for message in Outbox.messages():
11 yield message
12

13 @timed(interval)
14 def execute():
15 for _ in meld(receive(), send.generate()):

16 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

16 yield
17 return execute()

Let’s break this into its parts:

• The receive function reads the Inbox and yields each message received.

It is actually an unbounded function but don’t want to bound its execution in isolation.

• The send unbounded function sends every message we have in the Outbox and yields each one. In this case
we can apply the accumulated boundary to get a Bounded instance.

• Then we define an execute function bounded by timed. This function melds the receive and send processes,
but we can’t actually call send because we need to yield after each message has been received or sent. That’s
why we need to call the generate() so that the time boundary is also applied to the sending process.

Note: The structure from this example is actually taken from a real program, although simplified to serve better for
learning. For instance, in our real-world program bandwidth could be None to indicate no size limit should be applied
to the sending process. Also in the example we’re not actually saving nor sending messages!

xoutil.cli – Command line application facilities

Tools for Command-Line Interface (CLI) applications.

CLI is a mean of interaction with a computer program where the user (or client) issues commands to the program in
the form of successive lines of text (command lines).

Commands can be registered by:

• sub-classing the Command,

• using register() ABC mechanism for virtual sub-classes,

• redefining ~‘Command.sub_commands‘ class method.

New in version 1.4.1.

class xoutil.cli.Command
Base for all commands.

classmethod cli_name()
Calculate the command name.

Standard method uses ~xoutil.cli.tools.hyphen_name. Redefine it to obtain a different behaviour.

Example:

>>> class MyCommand(Command):
... pass

>>> MyCommand.cli_name() == 'my-command'
True

run(args=None)
Must return a valid value for “sys.exit”

classmethod set_default_command(cmd=None)
Default command is called when no one is specified.

2.5. xoutil.cli – Command line application facilities 17

https://docs.python.org/3.4/library/abc.html#abc.ABCMeta.register

xoutil Documentation, Release 1.8.0

A command is detected when its name appears as the first command-line argument.

To specify a default command, use this method with the command as a string (the command name) or the
command class.

If the command is specified, then the calling class is the selected one.

For example:

>>> Command.set_default_command('server')
>>> Server.set_default_command()
>>> Command.set_default_command(Server)

class xoutil.cli.Help
Show all commands.

Define the class attribute __order__ to sort commands in special command “help”.

Commands could define its help in the first line of a sequence of documentations until found:

•command class,

•“run” method,

•definition module.

This command could not be overwritten unless using the class attribute:

__override__ = True

classmethod get_arg_parser()
This is an example on how to build local argument parser.

Use class method “get

Applications

A simple main() entry point for CLI based applications.

This module provides an example of how to use xoutil.cli to create a CLI application.

xoutil.cli.app.main(default=None)
Execute a command.

It can be given as the first program argument or it’s the default command is defined.

Tools

Utilities for command-line interface (CLI) applications.

• program_name(): calculate the program name from “sys.argv[0]”.

• command_name()\ [calculate command names using class names in lower] case inserting a hyphen before
each new capital letter.

xoutil.cli.tools.command_name(cls)
Calculate a command name from given class.

Names are calculated putting class names in lower case and inserting hyphens before each new capital letter.
For example “MyCommand” will generate “my-command”.

It’s defined as an external function because a class method don’t apply to minimal commands (those with only
the “run” method).

18 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Example:

>>> class SomeCommand(object):
... pass

>>> command_name(SomeCommand) == 'some-command'
True

If the command class has an attribute command_cli_name, this will be used instead:

>>> class SomeCommand(object):
... command_cli_name = 'adduser'

>>> command_name(SomeCommand) == 'adduser'
True

It’s an error to have a non-string command_cli_name attribute:

>>> class SomeCommand(object):
... command_cli_name = None

>>> command_name(SomeCommand)
Traceback (most recent call last):

...
TypeError: Attribute 'command_cli_name' must be a string.

xoutil.cli.tools.hyphen_name(name, join_numbers=True)
Convert a name to a hyphened slug.

Expects a name in Camel-Case. All invalid characters (those invalid in Python identifiers) are ignored. Numbers
are joined with preceding part when join_numbers is True.

For example:

>>> hyphen_name('BaseNode') == 'base-node'
True

>> hyphen_name('--__ICQNámeP12_34Abc--') == 'icq-name-p12-34-abc'
True

>> hyphen_name('ICQNámeP12', join_numbers=False) == 'icq-name-p-12'
True

xoutil.cli.tools.program_name()
Calculate the program name from “sys.argv[0]”.

xoutil.clipping - Text clipping and trimming

Text clipping and trimming.

xoutil.clipping.DEFAULT_MAX_WIDTH = 64
Default value for max_width parameter in functions that reduce strings, see crop() and small().

xoutil.clipping.ELLIPSIS = ‘...’
Value used as a fill when a string representation is brimmed over.

xoutil.clipping.MIN_WIDTH = 8
Value for max_width parameter in functions that reduce strings, must not be less than this value.

2.6. xoutil.clipping - Text clipping and trimming 19

xoutil Documentation, Release 1.8.0

xoutil.clipping.crop(obj, max_width=None)
Return a reduced string representation of obj.

Classes can now define a new special method or attribute named ‘__crop__’.

If max_width is not given, defaults to DEFAULT_MAX_WIDTH.

New in version 1.8.0.

xoutil.clipping.crop_iterator(obj, max_width=None)
Return a reduced string representation of the iterator obj.

See crop() function for a more general tool.

If max_width is not given, defaults to DEFAULT_MAX_WIDTH.

New in version 1.8.0.

xoutil.clipping.small(obj, max_width=None)
Crop the string representation of obj and make some replacements.

•Lambda function representations (‘<lambda>’ by ‘𝜆’).

•Ellipsis (‘...’ by ‘. . . ’)

If max_width is not given, defaults to DEFAULT_MAX_WIDTH.

New in version 1.8.0.

xoutil.context - Simple execution contexts

A context manager for execution context flags.

xoutil.context.context
alias of Context

class xoutil.context.Context(*args, **kwargs)
An execution context manager with parameters (or flags).

Use as:

>>> SOME_CONTEXT = object()
>>> from xoutil.context import context
>>> with context(SOME_CONTEXT):
... if context[SOME_CONTEXT]:
... print('In context SOME_CONTEXT')
In context SOME_CONTEXT

Note the difference creating the context and checking it: for entering a context you should use
context(name) for testing whether some piece of code is being executed inside a context you should use
context[name]; you may also use the syntax name in context.

When an existing context is re-enter, the former one is reused. Nevertheless, the data stored in each context is
local to each level.

For example:

>>> with context('A', b=1) as a1:
... with context('A', b=2) as a2:
... print(a1 is a2)
... print(a2['b'])
... print(a1['b'])

20 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

True
2
1

For data access, a mapping interface is provided for all contexts. If a data slot is deleted at some level, upper
level is used to read values. Each new written value is stored in current level without affecting upper levels.

For example:

>>> with context('A', b=1) as a1:
... with context('A', b=2) as a2:
... del a2['b']
... print(a2['b'])
1

It is an error to reuse a context directly like in:

>>> with context('A', b=1) as a1:
... with a1:
... pass
Traceback (most recent call last):
...
RuntimeError: Entering the same context level twice! ...

Note: About thread-locals and contexts.

The context uses internally a thread-local instance to keep context stacks in different threads from seeing
each other.

If, when this module is imported, greenlet is imported already, greenlet isolation is also warranted (which implies
thread isolation).

If you use collaborative multi-tasking based in other framework other than greenlet, you must ensure to monkey patch
the threading.local class so that isolation is kept.

In future releases of xoutil, we plan to provide a way to inject a “process” identity manager so that other frameworks
be easily integrated.

Changed in version 1.7.1: Changed the test about greenlet. Instead of testing for greenlet to be importable, test it
is imported already.

Changed in version 1.6.9: Added direct greenlet isolation and removed the need for gevent.local.

New in version 1.6.8: Uses gevent.local if available to isolate greenlets.

xoutil.cpystack - Utilities to inspect the CPython’s stack

Utilities to inspect the CPython’s stack.

xoutil.cpystack.getargvalues(frame)
Inspects the given frame for arguments and returns a dictionary that maps parameters names to arguments
values. If an * argument was passed then the key on the returning dictionary would be formatted as <name-of-
*-param>[index].

For example in the function:

2.8. xoutil.cpystack - Utilities to inspect the CPython’s stack 21

https://docs.python.org/3.4/library/threading.html#threading.local
http://www.gevent.org/gevent.local.html#module-gevent.local
http://www.gevent.org/gevent.local.html#module-gevent.local

xoutil Documentation, Release 1.8.0

>>> def autocontained(a, limit, *margs, **ks):
... import sys
... return getargvalues(sys._getframe())

>>> autocontained(1, 12)['limit']
12

>>> autocontained(1, 2, -10, -11)['margs[0]']
-10

In Python 2.7, packed arguments also works:

>>> def nested((x, y), radius):
... import sys
... return getargvalues(sys._getframe())

>>> nested((1, 2), 12)['y']
2

xoutil.cpystack.error_info(*args, **kwargs)
Get error information in current trace-back.

No all trace-back are returned, to select which are returned use:

•args: Positional parameters

–If string, represent the name of a function.

–If an integer, a trace-back level.

Return all values.

•kwargs: The same as args but each value is a list of local names to return. If a value is True, means
all local variables.

Return a list with a dict in each item.

Example:

>>> def foo(x):
... x += 1//x
... if x % 2:
... bar(x - 1)
... else:
... bar(x - 2)

>>> def bar(x):
... x -= 1//x
... if x % 2:
... foo(x//2)
... else:
... foo(x//3)

>>> try:
... foo(20)
... except:
... print(printable_error_info('Example', foo=['x'], bar=['x']))
Example

ERROR: integer division or modulo by zero
...

22 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

xoutil.cpystack.object_info_finder(obj_type, arg_name=None, max_deep=25)
Find an object of the given type through all arguments in stack frames.

Returns a tuple with the following values: (arg-value, arg-name, deep, frame).

When no object is found None is returned.

Arguments: object_type: a type or a tuple of types as in “isinstance”. arg_name: the arg_name to find; if None
find in all arguments max_deep: the max deep to enter in the stack frames.

xoutil.cpystack.object_finder(obj_type, arg_name=None, max_deep=25)
Find an object of the given type through all arguments in stack frames.

The difference with object_info_finder() is that this function returns the object directly, not a tuple.

xoutil.cpystack.track_value(value, max_deep=25)
Find a value through all arguments in stack frames.

Returns a dictionary with the full-context in the same level as “value”.

xoutil.cpystack.iter_stack(max_deep=25)
Iterates through stack frames until exhausted or max_deep is reached.

To find a frame fulfilling a condition use:

frame = next(f for f in iter_stack() if condition(f))

Using the previous pattern, functions object_info_finder, object_finder and track_value can be reprogrammed
or deprecated.

New in version 1.6.8.

xoutil.cpystack.iter_frames(*args, **kw)
Iterates through all stack frames.

Returns tuples with the following:

(deep, filename, line_no, start_line).

New in version 1.1.3.

Deprecated since version 1.6.8: The use of params attr_filter and value_filter.

xoutil.crypto - Other cryptographic services

General security tools.

Adds the ability to generate new passwords using a source pass-phrase and a secury strong level.

xoutil.crypto.generate_password(pass_phrase, level=3)
Generate a password from a source pass-phrase and a security level.

Parameters

• pass_phrase – String pass-phrase to be used as base of password generation process.

• level – Numerical security level (the bigger the more secure, but don’t exaggerate!).

When pass_phrase is a valid string, level means a generation method. Each level implies all other with an
inferior numerical value.

There are several definitions with numerical values for level (0-4):

2.9. xoutil.crypto - Other cryptographic services 23

xoutil Documentation, Release 1.8.0

PASS_PHRASE_LEVEL_BASIC

Generate the same pass-phrase, just removing invalid characters and converting the result to lower-
case.

PASS_PHRASE_LEVEL_MAPPED

Replace some characters with new values: 'e'->'3', 'i'->'1', 'o'->'0', 's'->'5'.

PASS_PHRASE_LEVEL_MAPPED_MIXED

Consonants characters before ‘M’ (included) are converted to upper-case, all other are kept lower-
case.

PASS_PHRASE_LEVEL_MAPPED_DATED

Adds a suffix with the year of current date (“<YYYY>”).

PASS_PHRASE_LEVEL_STRICT

Randomly scramble previous result until unbreakable strong password is obtained.

If pass_phrase is None or an empty string, generate a “secure salt” (a password not based in a source pass-
phrase). A “secure salt” is generated by scrambling the concatenation of a random phrases from the alphanu-
meric vocabulary.

Returned password size is 4*level except when a pass-phrase is given for level <= 4 where depend on the
count of valid characters of pass-phrase argument, although minimum required is warranted. When pass-phrase
is None for level zero or negative, size 4 is assumed. First four levels are considered weak.

Maximum size is defined in the MAX_PASSWORD_SIZE constant.

Default level is PASS_PHRASE_LEVEL_MAPPED_DATED when using a pass-phrase.

xoutil.crypto.PASS_PHRASE_LEVEL_BASIC = 0
The most basic level (less) for the password generation.

xoutil.crypto.PASS_PHRASE_LEVEL_MAPPED = 1
A level for simply mapping of several chars.

xoutil.crypto.PASS_PHRASE_LEVEL_MAPPED_MIXED = 2
Another “stronger” mapping level.

xoutil.crypto.PASS_PHRASE_LEVEL_MAPPED_DATED = 3
Appends the year after mapping.

xoutil.crypto.PASS_PHRASE_LEVEL_STRICT = 4
Totally scramble the result, making very hard to predict the result.

xoutil.crypto.DEFAULT_PASS_PHRASE_LEVEL = 3
The default level for generate_password()

xoutil.crypto.MAX_PASSWORD_SIZE = 512
An upper limit for generated password length.

xoutil.decorator - Several decorators

This module contains several useful decorators, for several purposed. Also it severs as a namespace for other well-
defined types of decorators.

24 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Warning: This modules will be progressively deprecated during the 1.6 series.

We feel that either xoutil.objects or xoutil.functools are a better match for some of these decorators. But
since we need to make sure about keeping dependencies, the deprecation won’t be final until 1.7.0. After 1.8.0,
this modules will be finally removed.

Top-level decorators

class xoutil.decorator.AttributeAlias(attr_name)
Descriptor to create aliases for object attributes.

This descriptor is mainly to be used internally by aliases() decorator.

xoutil.decorator.settle(**kwargs)
Returns a decorator to settle attributes to the decorated target.

Usage:

>>> @settle(name='Name')
... class Person(object):
... pass

>>> Person.name
'Name'

xoutil.decorator.namer(name, **kwargs)
Like settle(), but ‘__name__’ is a required positional argument.

Usage:

>>> @namer('Identity', custom=1)
... class I(object):
... pass

>>> I.__name__
'Identity'

>>> I.custom
1

xoutil.decorator.aliases(*names, **kwargs)
In a class, create an AttributeAlias descriptor for each definition as keyword argument
(alias=existing_attribute).

If “names” are given, then the definition context is looked and are assigned to it the same decorator target with
all new names:

>>> @aliases('foo', 'bar')
... def foobar(*args):
... 'This function is added to its module with two new names.'

xoutil.decorator.assignment_operator(func, maybe_inline=False)
Makes a function that receives a name, and other args to get its first argument (the name) from an assignment
operation, meaning that it if its used in a single assignment statement the name will be taken from the left part
of the = operator.

2.10. xoutil.decorator - Several decorators 25

xoutil Documentation, Release 1.8.0

Warning: This function is dependant of CPython’s implementation of the language and won’t probably
work on other implementations. Use only you don’t care about portability, but use sparingly (in case you
change your mind about portability).

xoutil.decorator.instantiate(target, *args, **kwargs)
Some singleton classes must be instantiated as part of its declaration because they represents singleton objects.

Every argument, positional or keyword, is passed as such when invoking the target. The following two code
samples show two cases:

>>> @instantiate
... class Foobar(object):
... def __init__(self):
... print('Init...')
Init...

>>> @instantiate('test', context={'x': 1})
... class Foobar(object):
... def __init__(self, name, context):
... print('Initializing a Foobar instance with name={name!r} '
... 'and context={context!r}'.format(**locals()))
Initializing a Foobar instance with name='test' and context={'x': 1}

In all cases, Foobar remains the class, not the instance:

>>> Foobar
<class '...Foobar'>

class xoutil.decorator.memoized_property(fget, doc=None)
A read-only property that is only evaluated once.

This is extracted from the SQLAlchemy project’s codebase, merit and copyright goes to SQLAlchemy authors:

Copyright (C) 2005-2011 the SQLAlchemy authors and contributors

This module is part of SQLAlchemy and is released under the MIT License:
http://www.opensource.org/licenses/mit-license.php

class xoutil.decorator.memoized_instancemethod(fget, doc=None)
Decorate a method memoize its return value.

Best applied to no-arg methods: memoization is not sensitive to argument values, and will always return the
same value even when called with different arguments.

This is extracted from the SQLAlchemy project’s codebase, merit and copyright goes to SQLAlchemy authors:

Copyright (C) 2005-2011 the SQLAlchemy authors and contributors

This module is part of SQLAlchemy and is released under the MIT License:
http://www.opensource.org/licenses/mit-license.php

Sub packages

26 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

xoutil.decorator.development - Decorators for development annotations

xoutil.decorator.development.unstable(target, msg=None)
Declares that a method, class or interface is unstable.

This has the side-effect of issuing a warning the first time the target is invoked.

The msg parameter, if given, should be string that contains, at most, two positional replacement fields ({0} and
{1}). The first replacement field will be the type of target (interface, class or function) and the second matches
target’s full name.

xoutil.decorator.meta - Decorator-making facilities

Decorator-making facilities.

This module provides a signature-keeping version of the xoutil.decorators.decorator(), which is now
deprecated in favor of this module’s version.

We scinded the decorator-making facilities from decorators per se to allow the module xoutil.deprecation to
be used by decorators and at the same time, implement the decorator deprecated() more easily.

This module is an adapted work from the decorator version 3.3.2 package and is copyright of its owner as stated below.
Adaptation work is done by Merchise.

Original copyright and license notices from decorator package:

Copyright (c) 2005-2011, Michele Simionato

All rights reserved.

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in bytecode form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

class xoutil.decorator.meta.FunctionMaker(func=None, name=None, signature=None, de-
faults=None, doc=None, module=None, func-
dict=None)

An object with the ability to create functions with a given signature. It has attributes name, doc, module,
signature, defaults, dict and methods update and make.

classmethod create(obj, body, evaldict, defaults=None, doc=None, module=None, addsource=True,
**attrs)

Create a function from the strings name, signature and body. “evaldict” is the evaluation dictionary. If
addsource is true an attribute __source__ is added to the result. The attributes attrs are added, if any.

make(src_templ, evaldict=None, addsource=False, **attrs)
Make a new function from a given template and update the signature

2.10. xoutil.decorator - Several decorators 27

xoutil Documentation, Release 1.8.0

update(func, **kw)
Update the signature of func with the data in self

xoutil.decorator.meta.flat_decorator(caller, func=None)
Creates a signature keeping decorator.

decorator(caller) converts a caller function into a decorator.

decorator(caller, func) decorates a function using a caller.

xoutil.decorator.meta.decorator(caller)
Eases the creation of decorators with arguments. Normally a decorator with arguments needs three nested
functions like this:

def decorator(*decorator_arguments):
def real_decorator(target):

def inner(*args, **kwargs):
return target(*args, **kwargs)

return inner
return real_decorator

This decorator reduces the need of the first level by comprising both into a single function definition. However
it does not removes the need for an inner function:

>>> @decorator
... def plus(target, value):
... from functools import wraps
... @wraps(target)
... def inner(*args):
... return target(*args) + value
... return inner

>>> @plus(10)
... def ident(val):
... return val

>>> ident(1)
11

A decorator with default values for all its arguments (except, of course, the first one which is the decorated
target) may be invoked without parenthesis:

>>> @decorator
... def plus2(func, value=1, missing=2):
... from functools import wraps
... @wraps(func)
... def inner(*args):
... print(missing)
... return func(*args) + value
... return inner

>>> @plus2
... def ident2(val):
... return val

>>> ident2(10)
2
11

But (if you like) you may place the parenthesis:

28 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> @plus2()
... def ident3(val):
... return val

>>> ident3(10)
2
11

However, this is not for free, you cannot pass a single positional argument which type is a function:

>>> def p():
... print('This is p!!!')

>>> @plus2(p)
... def dummy():
... print('This is dummy')
Traceback (most recent call last):

...
TypeError: p() takes ...

The workaround for this case is to use a keyword argument.

xoutil.deprecation - Utils for marking deprecated elements

xoutil.deprecation.deprecated(replacement, msg=None, deprecated_module=None, re-
moved_in_version=None, check_version=False)

Small decorator for deprecated functions.

Usage:

@deprecated(new_function)
def deprecated_function(...):

...

Parameters

• replacement – Either a string or the object that replaces the deprecated.

• msg – A deprecation warning message template. You should provide keyword arguments
for the format() function. Currently we pass the current keyword arguments: replace-
ment (after some processing), funcname with the name of the currently deprecated object
and in_version with the version this object is going to be removed if removed_in_version
argument is not None.

Defaults to: “{funcname} is now deprecated and it will be removed{in_version}. Use {re-
placement} instead.”

• removed_in_version – The version the deprecated object is going to be removed.

• check_version – If True and removed_in_version is not None, then declarations of
obseleted objects will raise a DeprecationError. This helps the release manager to keep the
release clean.

Note: Currently only works with setuptools’ installed distributions.

2.11. xoutil.deprecation - Utils for marking deprecated elements 29

https://docs.python.org/3.4/library/functions.html#format

xoutil Documentation, Release 1.8.0

• deprecated_module – If provided, the name of the module the deprecated object re-
sides. Not needed if the deprecated object is a function or class.

• new_name – If provided, it’s used as the name of the deprecated object. Needed to allow
renaming in import_deprecated() helper function.

Changed in version 1.4.1: Introduces removed_in_version and check_version.

xoutil.deprecation.import_deprecated(module, *names, **aliases)
Import functions deprecating them in the target module.

The target module is the caller of this function (only intended to be called in the global part of a module).

Parameters

• module – The module from which functions will be imported. Could be a string, or an
imported module.

• names – The names of the functions to import.

• aliases – Keys are the new names, values the old names.

For example:

>>> from xoutil.deprecation import import_deprecated
>>> import math
>>> import_deprecated(math, 'sin', new_cos='cos')
>>> sin is not math.sin
True

Next examples are all True, but them print the deprecation warning when executed:

>>> sin(math.pi/2) == 1.0
>>> new_cos(2*math.pi) == math.cos(2*math.pi)

If no identifier is given, it is assumed equivalent as from module import *.

The statement import_deprecated('math', 'sin', new_cos='cos') has the same semantics as
from math import sin, cos as new_cos, but deprecating current module symbols.

This function is provided for easing the deprecation of whole modules and should not be used to do otherwise.

xoutil.deprecation.inject_deprecated(*args, **kw)
Injects a set of functions from a module into another.

The functions will be marked as deprecated in the target module.

Parameters

• funcnames – function names to take from the source module.

• source – the module where the functions resides.

• target – the module that will contains the deprecated functions. If None will be the
module calling this function.

This function is provided for easing the deprecation of whole modules and should not be used to do otherwise.

Deprecated since version 1.8.0: Use import_deprecated().

30 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

xoutil.dim - Facilities to work with concrete numbers

The name ‘dim’ is a short of dimension. We borrow it from the topic dimensional analysis, even though the scope of
this module is less ambitious.

This module is divided in two major parts: meta-definitions and applications.

xoutil.dim.meta – Meta-definitions for concrete numbers.

Facilities to work with concrete numbers.

A concrete number is a number associated with the things being counted, in contrast to an abstract number
which is a number as a single entity.

—Wikipedia

This module allows you to define dimensions (or quantity types):

>>> from xoutil.dim.meta import Dimension, UNIT
>>> @Dimension.new
... class Length(object):
... metre = UNIT
... kilometre = 1000 * metre
... centimetre = metre/100
... milimetre = milimetres = metre/1000
...
... inch = inches = 24.5 * milimetres
... foot = feet = 12 * inches

See also:

Module base defines the standard base quantities.

Each dimension must define a single canonical unit for measuring quantities within the dimension. Values in the
dimension are always expressed in terms of the canonical units.

In the previous example the dimension Length defined the metre for its canonical unit. The name of canonical unit
defines the signature for the quantities in the dimension.

When printed (or repr-ed) quantities use the format <magnitude>::<signature>:

>>> metre = Length.metre
>>> metre
1::{<Length.metre>}/{}

Quantities support the standard arithmetical operations of addition, subtraction, multiplication and division. In fact,
you obtain different quantities in the dimension by multiplying with the canonical unit:

>>> metre + metre
2::{<Length.metre>}/{}

>>> metre*metre
1::{<Length.metre>, <Length.metre>}/{}

>>> km = 1000 * metre

>>> 5 * km
5000::{<Length.metre>}/{}

2.12. xoutil.dim - Facilities to work with concrete numbers 31

https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/Concrete_number
https://en.wikipedia.org/wiki/Concrete_number

xoutil Documentation, Release 1.8.0

Dimensional homogeneity imposes restrictions on the allowed operations between quantities. Only commensurable
quantities (quantities of the same dimension) can be compared, equated, added, or subtracted.

>>> @Dimension.new
>>> class Time(object):
... second = UNIT

>>> metre + Time.second
Traceback (...)
...
OperandTypeError: unsupported operand type(s) for +:...

However, you can take ratios of incommensurable quantities (quantities with different dimensions), and multiply or
divide them.

>>> metre/Time.second
>>> 1::{<Length.metre>}/{<Time.second>}

Warning: Decimal numbers are not supported.

This module makes not attempt to fix the standing incompatibility between floats and decimal.Decimal:

>>> import decimal
>>> decimal.Decimal('0') + 0.1
Traceback (...)
...
TypeError: unsupported operand type(s) for +: 'Decimal' and 'float'

The signature created by Dimension for its canonical unit is simply a string that varies with the name of the dimen-
sion and that of the canonical unit. This implies that you can recreate the same dimension and it will be interoperable
with the former:

>>> @Dimension.new
... class L(object):
... m = UNIT

>>> m = L.m # Save this

>>> # Recreate the same dimension.
>>> @Dimension.new
... class L(object):
... m = UNIT

>>> m == L.m
True

Both the dimension name and the canonical unit name must be the same for this to work.

Note: We advice to define a dimension only once and import it where needed.

class xoutil.dim.meta.Dimension
A type for quantities.

This is a metaclass for dimensions. Every instance (class) will automatically have the following attributes:

32 Chapter 2. Contents

https://en.wikipedia.org/wiki/Dimensional_analysis#Dimensional_homogeneity
https://docs.python.org/3.4/library/decimal.html#decimal.Decimal
https://docs.python.org/3.4/library/decimal.html#decimal.Decimal
https://en.wikipedia.org/wiki/Concrete_numbers

xoutil Documentation, Release 1.8.0

unitname
The name of canonical unit in the dimension. Notice that aliases are created after the defined canonical
unit. This is the name of the attribute provided in the class definition of the dimension with value equal to
UNIT.

unit
The canonical quantity . This is the quantity 1 (UNIT) expressed in terms of the canonical unit.

signature
The canonical signature of the quantities.

It’s always true that Quantity(UNIT, self._signature_) == self._unit_.

The provided dimension Length has the canonical quantity 1 metre:

>>> Length.metre
1::{<Length.metre>}/{}

>>> Length._unit_ == Length.metre == Quantity(1, Length._signature_)
True

classmethod new(*source, **kwargs)
Define a new dimension.

This is a wrapped decorator. The actual possible signatures are:

•new(unit_alias=None, unit_aliases=None)(source)

•new(source)

This allows to use this method as decorator with or without arguments.

Parameters

• source – A class with at least the canonical unit definition. Other unit definitions will be
automatically converted.

• unit_alias – An alias for the canonical unit. You cannot use a source with several
canonical units. This is a simple way to introduce a single alias.

• unit_aliases – A sequence with the name of other aliases for the canonical unit.

Example:

>>> @Dimension.new(unit_alias='man')
... class Workforce(object):
... men = UNIT

>>> Workforce.men == Workforce.man == Workforce._unit_
True

The resulting class will be an instance of Dimension

>>> isinstance(Workforce, Dimension)
True

The original class is totally missed:

>>> Workforce.mro()
[...Workforce, object]

2.12. xoutil.dim - Facilities to work with concrete numbers 33

xoutil Documentation, Release 1.8.0

To complete the example, let’s introduce the dimension Effort that expresses the usual amount of men-
power and time needed to complete some task. However Time has the second as it canonical unit, but the
standard for Effort is men-hour:

>>> class Effort(Workforce * Time):
... # Since the canonical unit of a composed quantity type is built from
... # the canonical units of the operands, but the true "canonical type"
... # of effort is usually men-hour we re-introduce it.
... men_hour = 60

This does not mean that Effort._unit_ == Effort.men_hour. The canonical unit would be
Effort.men_second.

class xoutil.dim.meta.Signature(top=None, bottom=None)
The layout of the kinds that compose a quantity.

The layout is given by a pair non-ordered collections (repetition is allowed): the numerator (we call it top within
the signature) and the denominator (bottom).

We represent a signature as {top elements}/{bottom elements}.

You may regard a signature as an abstract ‘syntactical’ part of a quantity. For Length, the {metre}/{} is the
signature of such a quantity.

The number “10” is not tied to any particular kind of quantity. Bare numbers have no kind and the bear the
signature {}/{}.

The items of top and bottom are required to be comparable for equality (==).

You can multiply and divide signatures and simplification happens automatically.

You should regard signatures as immutable values. In fact, this is kind of an internal, but interesting, concept of
this module.

Examples:

>>> distance = Signature('m')
>>> distance
{m}/{}

>>> time = Signature('s')

>>> freq = 1/time
>>> freq
{}/{s}

>>> speed = distance/time
>>> speed
{m}/{s}

>>> acceleration = speed/time
>>> acceleration
{m}/{s, s}

You may compare signatures for equality.

>>> acceleration == distance/(time*Signature('s'))
True

>>> speed == distance * freq
True

34 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Signature don’t support neither addition nor subtraction:

>>> distance + distance
Traceback (...)
...
TypeError: unsupported operand type(s) for +: 'Signature' and 'Signature'

static simplify(top, bottom)
Removes equal items from top and bottom in a one-to-one correspondence.

Signatures are simplified on initialization:

>>> Signature('abcxa', 'bxay')
{c, a}/{y}

This function takes top and bottom and returns simplified tuples for top and bottom.

class xoutil.dim.meta.Quantity(quantity, units)
A concrete number of quantity (expressed in) units.

See also:

https://en.wikipedia.org/wiki/Concrete_number

Parameters

• quantity – A real number.

• units – A signature for the units the denominate the given quantity.

You can construct instances by operating with the attributes of a dimension. For instance, this is 5 kilometres:

>>> from xoutil.dim.base import L
>>> 5 * L.km
5000::{<Length.metre>}/{}

A concrete number is of the type of its dimension:

>>> isinstance(5 * L.km, L)
True

class xoutil.dim.meta.Scalar
A quantity whose signature is always empty.

Most of the time you should not deal with this quantity. Any normal operation that results in a scalar gets
reduced to Python’s type:

>>> from xoutil.dim.base import L
>>> L.m/L.m
1.0

This type makes the operations on dimensions closed under multiplication:

>>> Scalar * L == L == L * Scalar
True

xoutil.dim.meta.UNIT
This the constant value 1. It’s given this name to emphasize it’s the canonical unit for a dimension.

xoutil.dim.meta.SCALAR
The signature of dimensionless quantities.

2.12. xoutil.dim - Facilities to work with concrete numbers 35

https://en.wikipedia.org/wiki/Concrete_number

xoutil Documentation, Release 1.8.0

xoutil.dim.base - The base physical quantities

The standard physical quantities.

class xoutil.dim.base.Length
The Length base quantity.

metre
The canonical unit.

m
An alias of metre

Other attributes:

kilometre

km

centimetre

cm

millimetre

mm

nanometre

nm

class xoutil.dim.base.Time
The Time base quantity.

second
The canonical unit.

s
An alias of second

Other attributes:

millisecond

ms

nanosecond

ns

minute

hour

class xoutil.dim.base.Mass
The Mass base quantity.

kilogram
The canonical unit.

kg
An alias of kilogram

Other attributes:

gram

36 Chapter 2. Contents

https://en.wikipedia.org/wiki/International_System_of_Quantities#Base_quantities

xoutil Documentation, Release 1.8.0

class xoutil.dim.base.ElectricCurrent
The electrical current base quantity.

ampere
The canonical unit.

A
An alias of ampere

class xoutil.dim.base.Temperature
The thermodynamic temperature base quantity.

kelvin
The canonical unit.

K
An alias of kelvin

classmethod from_celcius(val)
Convert val ºC to K

classmethod from_fahrenheit(val)
Convert val ºF to K

class xoutil.dim.base.Substance
The amount of substance.

mole

mol
An alias of mole.

class xoutil.dim.base.Luminosity
The luminous intensity base quantity.

candela

Aliases

class xoutil.dim.base.L
An alias of Length

class xoutil.dim.base.T
An alias of Time

class xoutil.dim.base.M
An alias of Mass

class xoutil.dim.base.I
An alias of ElectricCurrent

class xoutil.dim.base.O
An alias of Temperature. We can’t really use the Greek Theta Θ

class xoutil.dim.base.N
An alias of Substance

class xoutil.dim.base.J
An alias of Luminosity

2.12. xoutil.dim - Facilities to work with concrete numbers 37

xoutil Documentation, Release 1.8.0

Derived quantities

class xoutil.dim.base.Area
Defined as L**2.

metre_squared
The canonical unit.

class xoutil.dim.base.Volume
Defined as L**3.

metre_cubic
The canonical unit.

class xoutil.dim.base.Frequency
Defined as T**-1 (which is the same as 1/T).

unit_per_second
The canonical unit.

Aliases of the canonical unit:

Hz

class xoutil.dim.base.Force
Defined as L * M * T**-2.

metre_kilogram_per_second_squared
The canonical unit.

Aliases of the canonical unit:

N

Newton

class xoutil.dim.base.Presure
Defined as L**-1 * M * T**-2.

kilogram_per_metre_per_second_squared

Aliases of the canonical unit:

pascal

Pa

class xoutil.dim.base.Velocity
Defined as L * T**-1.

metre_per_second
The canonical unit.

class xoutil.dim.base.Acceleration
Defined as L * T**-2.

metre_per_second_squared
The canonical unit.

On the automatically created names for derived quantities

We automatically create the name of the canonical unit of quantities derived from others by simple rules:

38 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

• A * B joins the canonical unit names together with a low dash ‘_’ in-between. Let’s represent it as a_b, where
a stands for the name of the canonical unit of A and b, the canonical unit of B.

For the case, A * A the unit name is a_squared.

• A/B gets the name a_per_b. 1/A gets the name unit_per_a

• A**n; when n=1 this is the same as A; when n=2 this is the same as A * A; for other positive values of n, the
canonical unit name is a_pow_n; for negative values of n is the same as 1/A**n; for n=0 this is the Scalar
quantity.

xoutil.dim.currencies – Concrete numbers for money

Concrete numbers for money.

You may have 10 dollars and 5 euros in your wallet, that does not mean that you have 15 of anything (but bills,
perhaps). Though you may evaluate your cash in any other currency you don’t have that value until you perform an
exchange with a given rate.

This module support the family of currencies. Usage:

>>> from xoutil.dim.currencies import Rate, Valuation, currency
>>> dollar = USD = currency('USD')
>>> euro = EUR = currency('EUR')
>>> rate = 1.19196 * USD/EUR

>>> isinstance(dollar, Valuation)
True

>>> isinstance(rate, Rate)
True

Even 0 dollars are a valuation
>>> isinstance(dollar - dollar, Valuation)
True

But 1 is not a value nor a rate
>>> isinstance(dollar/dollar, Valuation) or isinstance(dollar/dollar, Rate)
False

Currency names are case-insensitive. We don’t check the currency name is listed in ISO 4217. So currency MVA is
totally acceptable in this module.

We don’t download rates from any source.

This module allows you to trust your computations of money by allowing only sensible operations:

>>> dollar + euro
Traceback (...)
...
OperandTypeError: unsupported operand type(s) for +: '{USD}/{}' and '{EUR}/{}

If you convert your euros to dollars:

>>> dollar + rate * euro
2.19196::{USD}/{}

Or your dollars to euros

2.12. xoutil.dim - Facilities to work with concrete numbers 39

https://en.wikipedia.org/wiki/ISO_4217

xoutil Documentation, Release 1.8.0

>>> dollar/rate + euro
1.83895432733::{EUR}/{}

xoutil.eight – Extensions for writing code that runs on Python 2
and 3

Todo

check automodule:: xoutil.eight :members:

The name comes from (Manu’s idea’) “2 raised to the power of 3”.

This module is divided in several parts.

xoutil.eight.abc - Abstract Base Classes (ABCs) according to PEP 3119

Abstract Base Classes (ABCs) according to PEP 3119.

Compatibility module between Python 2 and 3.

This module defines one symbol that is defined in Python 3 as a class:

class ABC(metaclass=ABCMeta): “”“Helper class that provides a standard way to create an ABC using
inheritance. “”” pass

In our case it’s defined as ABC = metaclass(ABCMeta), that is a little tricky (see
xoutil.eight.meta.metaclass:func‘).

abstractclassmethod is deprecated. Use classmethod with abstractmethod instead.

abstractstaticmethod is deprecated. Use staticmethod with abstractmethod instead.

xoutil.eight.abc.get_cache_token()
Returns the current ABC cache token.

The token is an opaque object (supporting equality testing) identifying the current version of the ABC cache for
virtual sub-classes. The token changes with every call to register() on any ABC.

xoutil.eight.meta - metaclass function using Python 3 syntax

Implements the metaclass() function using the Py3k syntax.

xoutil.eight.meta.metaclass(meta, **kwargs)
Define the metaclass of a class.

New in version 1.7.0: It’s available as xoutil.objects.metaclass() since 1.4.1. That alias is now
deprecated and will be removed in 1.8.

This function allows to define the metaclass of a class equally in Python 2 and 3.

Usage:

40 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> class Meta(type):
... pass

>>> class Foobar(metaclass(Meta)):
... pass

>>> class Spam(metaclass(Meta), dict):
... pass

>>> type(Spam) is Meta
True

>>> Spam.__bases__ == (dict,)
True

New in version 1.5.5: The kwargs keywords arguments with support for __prepare__.

Metaclasses are allowed to have a __prepare__ classmethod to return the namespace into which the body of
the class should be evaluated. See PEP 3115.

Warning: The PEP 3115 is not possible to implement in Python 2.7.

Despite our best efforts to have a truly compatible way of creating meta classes in both Python 2.7 and 3.0+,
there is an inescapable difference in Python 2.7. The PEP 3115 states that __prepare__ should be called
before evaluating the body of the class. This is not possible in Python 2.7, since __new__ already receives
the attributes collected in the body of the class. So it’s always too late to call __prepare__ at this point
and the Python 2.7 interpreter does not call it.

Our approach for Python 2.7 is calling it inside the __new__ of a “side” metaclass that is used for the
base class returned. This means that __prepare__ is called only for classes that use the metaclass()
directly. In the following hierarchy:

class Meta(type):
@classmethod
def __prepare__(cls, name, bases, **kwargs):

from xoutil.future.collections import OrderedDict
return OrderedDict()

class Foo(metaclass(Meta)):
pass

class Bar(Foo):
pass

when creating the class Bar the __prepare__() class method is not called in Python 2.7!

See also:

xoutil.future.types.prepare_class() and xoutil.future.types.new_class().

Warning: You should always place your metaclass declaration first in the list of bases. Doing otherwise
triggers twice the metaclass’ constructors in Python 3.1 or less.

If your metaclass has some non-idempotent side-effect (such as registration of classes), then this would lead
to unwanted double registration of the class:

2.13. xoutil.eight – Extensions for writing code that runs on Python 2 and 3 41

https://www.python.org/dev/peps/pep-3115
https://www.python.org/dev/peps/pep-3115
https://www.python.org/dev/peps/pep-3115

xoutil Documentation, Release 1.8.0

>>> class BaseMeta(type):
... classes = []
... def __new__(cls, name, bases, attrs):
... res = super(BaseMeta, cls).__new__(cls, name, bases, attrs)
... cls.classes.append(res) # <-- side effect
... return res

>>> class Base(metaclass(BaseMeta)):
... pass

>>> class SubType(BaseMeta):
... pass

>>> class Egg(metaclass(SubType), Base): # <-- metaclass first
... pass

>>> Egg.__base__ is Base # <-- but the base is Base
True

>>> len(BaseMeta.classes) == 2
True

>>> class Spam(Base, metaclass(SubType)):
... 'Like "Egg" but it will be registered twice in Python 2.x.'

In this case the registration of Spam ocurred twice:

>>> BaseMeta.classes
[<class Base>, <class Egg>, <class Spam>, <class Spam>]

Bases, however, are just fine:

>>> Spam.__bases__ == (Base,)
True

New in version 1.7.1: Now are accepted atypical meta-classes, for example functions or any callable with the
same arguments as those that type accepts (class name, tuple of base classes, attributes mapping).

xoutil.eight.mixins - functions to create helper classes and mixins

Two functions to create helper classes and mixins.

This module is in the eight context because these two functions depend on several concepts that are different in Python
2 and 3.

• helper_class() creates a base class that represent a meta-class. For example (only for Python 3),
xoutil.eight.abc.ABC is different to abc.ABC:

>>> from xoutil.eight.abc import ABC, ABCMeta
>>> class One(ABC):
... pass
>>> One.__bases__ == (ABC,)
False
>>> One.__bases__ == (Mixin,)
True

42 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> from abc import ABC
>>> class Two(ABC):
... pass
>>> Two.__bases__ == (ABC,)
True
>>> Two.__bases__ == (Mixin,)
False

• mixin() create a base-class tha consolidate several mix-ins and meta-classes. For example:

>>> from xoutil.eight.abc import ABCMeta

>>> class One(dict):
... pass

>>> class Two(object):
... pass

>>> class OneMeta(type):
... pass

>>> class TwoMeta(type):
... pass

>>> Test = mixin(One, Two, meta=[OneMeta, TwoMeta, ABCMeta], name='Test')
>>> Test.__name__ == 'Test'
True
>>> isinstance(Test, ABCMeta)
True

These modules (this one and meta) must have four utilities:

• metaclass to use a unique syntax to declare meta-classes between Python 2 and 3.

• helper_class to build a class that when used as a base impose a meta-class and not is found in resulting bases of
defined class. For example xoutil.eight.abc.ABC.

• mixin build a mixin-base composing several parts and meta-classes.

• compose specify the use of a mixin as one of the bases, but the new defined class will not be a mixin, this is not
implemented yet because will require a big architecture re-factoring; for example:

class Foobar(MyBase, compose(MyMixin)):
pass

Maybe the last two names must be interchanged.

xoutil.eight.mixins.helper_class(meta, name=None)
Create a helper class based in the meta-class concept.

Parameters

• meta – The meta-class type to base returned helper-class on it.

• name – The name (__name__) to assign to the returned class; if None is given, a nice
name is calculated.

For example:

>>> from abc import ABCMeta
>>> ABC = helper_class(ABCMeta) # better than Python 3's abc.ABC :(

2.13. xoutil.eight – Extensions for writing code that runs on Python 2 and 3 43

xoutil Documentation, Release 1.8.0

>>> class MyError(Exception, ABC):
... pass
>>> (MyError.__bases__ == (Exception,), hasattr(MyError, 'register'))
(True, True)

This function calls metaclass() internally. So, in the example anterior, MyError declaration is equivalent
to:

>>> class MyError(Exception, metaclass(ABCMeta)):
... pass

xoutil.eight.mixins.mixin(*args, **kwargs)
Weave a mixin.

Parameters of this function are a little tricky.

Parameters

• name – The name of the new class created by this function. Could be passed as positional
or keyword argument. Use __name__ as an alias. See helper_class() for more info
about this parameter and next two.

• doc – Documentation of the returned mixin-class. Could be passed as positional or keyword
argument. Use __doc__ as an alias.

• module – Always given as a keyword parameter. A string -or an object to be used as
reference- representing the module name. Use __module__ as an alias.

• metaclass – Always given as a keyword parameter. Could be one type value or a list
of values (multiples meta-classes). Use (__metaclass__, metaclasses, or meta) as
aliases.

If several mixins with the same base are used all-together in a class inheritance, Python generates TypeError:
multiple bases have instance lay-out conflict. To avoid that, inherit from the class this
function returns instead of desired base.

xoutil.eight.string - Checkers for simple types

Technical string handling.

Technical strings are those that requires to be instances of str standard type. See String Ambiguity in Python for more
information.

This module will be used mostly as a namespace, for example:

from xoutil.eight import string
Foobar.__name__ = string.force(class_name)

If these functions are going to be used standalone, do something like:

from xoutil.eight.string import force as force_str
Foobar.__name__ = force_str(class_name)

xoutil.eight.string.check_identifier(s)
Check if s is a valid identifier.

xoutil.eight.string.force(value=’‘)
Convert any value to standard str type in a safe way.

44 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

This function is useful in some scenarios that require str type (for example attribute __name__ in functions
and types).

As str is bytes in Python 2, using str(value) assures correct these scenarios in most cases, but in other is
not enough, for example:

>>> from xoutil.eight import string
>>> def inverted_partial(func, *args, **keywords):
... def inner(*a, **kw):
... a += args
... kw.update(keywords)
... return func(*a, **kw)
... name = func.__name__.replace('lambda', u'𝜆')
... inner.__name__ = string.force(name)
... return inner

xoutil.eight.string.force_ascii(value)
Return the string normal form for the value

Convert all non-ascii to valid characters using unicode ‘NFKC’ normalization.

xoutil.eight.string.isfullidentifier(s)
Check if arg is a valid dotted Python identifier.

See isidentifier() for what “validity” means.

xoutil.eight.string.isidentifier(s)
If s is a valid identifier according to the language definition.

xoutil.eight.string.safe_isfullidentifier(s)
Check if arg is a valid dotted Python identifier.

Check before if s is instance of string types. See safe_isidentifier() for what “validity” means.

xoutil.eight.string.safe_isidentifier(s)
If s is a valid identifier according to the language definition.

Check before if s is instance of string types.

xoutil.eight.string.safe_join(separator, iterable)
Similar to join method in string objects.

The semantics is equivalent to separator.join(iterable) but forcing separator and items to be of str
standard type.

For example:

>>> safe_join('-', range(6))
'0-1-2-3-4-5'

Check that the expression '-'.join(range(6)) raises a TypeError.

xoutil.eight.text - TODO

Text handling, strings can be part of internationalization processes.

See String Ambiguity in Python for more information.

New in version 1.8.0.

2.13. xoutil.eight – Extensions for writing code that runs on Python 2 and 3 45

xoutil Documentation, Release 1.8.0

xoutil.eight.text.force(buffer, encoding=None)
Convert any value to standard text type in a safe way.

The standard text type is unicode in Python 2 and str in Python 3.

xoutil.eight.text.safe_join(separator, iterable, encoding=None)
Similar to join method in string objects.

The semantics is equivalent to separator.join(iterable) but forcing separator and items to be the
valid instances of standard text type (unicode in Python 2 and str in Python 3).

For example:

>>> safe_join('-', range(6))
'0-1-2-3-4-5'

Check that the expression '-'.join(range(6)) raises a TypeError.

Parameters encoding – used to allow control, but won’t be common to use it.

xoutil.eight.io - Extensions to Python’s io module

Extensions to Python’s io module.

You may use it as drop-in replacement of io. Although we don’t document all items here. Refer to io documentation.

In Python 2, buil-int open() is different from io.open(); in Python 3 are the same function.

So, generated files with the built-in funtion in Python 2, can not be processed using abc types, for example:

f = open('test.rst')
assert isinstance(f, io.IOBase)

will fail in Python 2 and not in Python 3.

Another incompatibilities:

• file type doesn’t exists in Python 3.

• Python 2 instances created with io.StringIO:class‘, or with io.open() using text mode, don’t accept str val-
ues, so it will be better to use any of the standards classes (StringIO.StringIO, cStringIO.StringIO
or open() built-in).

New in version 1.7.0.

xoutil.eight.io.is_file_like(obj)
Return if obj is a valid file type or not.

xoutil.eight.queue - A multi-producer, multi-consumer queue

A multi-producer, multi-consumer queue.

xoutil.eight.exceptions - Exceptions handling compatibility

Solve compatibility issues for exceptions handling.

Python 2 defines a module named exceptions but Python 3 doesn’t. We decided not to implement something similar,
for example, in xoutil.future package because all these exception classes are built-ins in both Python major

46 Chapter 2. Contents

https://docs.python.org/3.4/library/io.html#module-io
https://docs.python.org/3.4/library/functions.html#open
https://docs.python.org/3.4/library/io.html#io.open
https://docs.python.org/3.4/library/io.html#io.open
https://docs.python.org/2.7/library/stringio.html#StringIO.StringIO
https://docs.python.org/3.4/library/functions.html#open

xoutil Documentation, Release 1.8.0

versions, so use any of them directly; nevertheless StandardError is undefined in Python 3, we introduce some
adjustments here in base classes (BaseException and StandardError classes).

The functions catch() and throw() unify syntax differences raising exceptions. In Python 2 the syntax for raise
is:

"raise" [type ["," value ["," traceback]]]

and in Python 3:

"raise" [error[.with_traceback(traceback)] ["from" cause]]

You can use catch() as a function to wrap errors going to be raised with a homogeneous syntax using a trace extra
argument:

>>> divisor = 0
>>> try:
... inverted = 1/divisor
... except BaseException:
... raise catch(ValueError('Invalid divisor.'))

If you want to be completely compatible raising exceptions with trace-backs, use the throw() function instead the
raise statement.

xoutil.eight.exceptions.catch(self)
Check an error to settle trace-back information if found.

Parameters self – The exception to check.

xoutil.eight.exceptions.caught = <xoutil.tasking.AutoLocal object>
Last caught trace context, see catch().

xoutil.eight.exceptions.grab(self=None, trace=None)
Prepare an error being raised with a trace-back and/or a cause.

Parameters

• self – The exception to be raised or None to capture the current trace context for future
use.

• trace – Could be a trace-back, a cause (exception instance), or both in a tuple (or list) with
(cause, traceback). If None, use the current system exception info as the trace (see
sys.exc_info() built-in function).

This function create a syntax for raise statement, compatible for both major Python versions.

xoutil.eight.exceptions.throw(error, tb=None)
Unify syntax for raising an error with trace-back information.

Instead of using the Python raise statement, use throw(error, tb). If tb argument is not given, the
trace-back information is looked up in the context.

xoutil.eight.exceptions.traceof(error)
Get the trace-back information of the given error.

Return None if not defined.

xoutil.eight.exceptions.with_cause(self, cause)
set self.__cause__ to cause and return self.

xoutil.eight.exceptions.with_traceback(self, tb)
set self.__traceback__ to tb and return self.

2.13. xoutil.eight – Extensions for writing code that runs on Python 2 and 3 47

https://docs.python.org/3.4/library/exceptions.html#BaseException
https://docs.python.org/3.4/library/sys.html#sys.exc_info

xoutil Documentation, Release 1.8.0

xoutil.formatter - Formatting

Smart formatting.

class xoutil.formatter.Template(template)
A string class for supporting $-substitutions.

It has similar interface that string.Template but using “eval” instead simple dictionary looking.

This means that you get all the functionality provided by string.Template (although, perhaps modified) and you
get also the ability to write more complex expressions.

If you need repetition or other flow-control sentences you should use other templating system.

If you enclose and expression within ${?...} it will be evaluated as a python expression. Simple variables
are allowed just with $var or ${var}:

>>> tpl = Template(str('${?1 + 1} is 2, and ${?x + x} is $x + ${x}'))
>>> (tpl % dict(x=4)) == '2 is 2, and 8 is 4 + 4'
True

The mapping may be given by calling the template:

>>> tpl(x=5) == '2 is 2, and 10 is 5 + 5'
True

xoutil.formatter.count(source, chars)
Counts how chars from chars are found in source:

>>> count('Todos los nenes del mundo vamos una rueda a hacer', 'a')
1

The vowel "i" is missing
>>> count('Todos los nenes del mundo vamos una rueda a hacer', 'aeiuo')
4

xoutil.fp – Functional Programming in Python

Advanced functional programming in Python.

Note: This module is in EXPERIMENTAL state, we encourage not to use it before declared stable.

Ideally, a function only takes inputs and produce outputs, and doesn’t have any internal state that affects the output
produced for a given input (like in Haskell).

Contents

xoutil.fp.option - Functional Programming Option Type

Functional Programming Option Type definition.

48 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

In Programming, and Type Theory, an option type, or maybe type, represents encapsulation of an optional value; e.g.,
it is used in functions which may or may not return a meaningful value when they are applied.

It consists of either a constructor encapsulating the original value x (written Just x or Some x) or an empty
constructor (called None or Nothing). Outside of functional programming, these are known as nullable types.

In our case option type will be the Maybe class (the equivalent of Option in Scala Programming Language), the
wrapper for valid values will be the Just class (equivalent of Some in Scala); and the wrapper for invalid values will
be the Wrong class.

Instead of None or Nothing, Wrong is used because two reasons: (1) already existence of None special Python value,
and (2) Wrong also wraps incorrect values and can have several instances (not only a null value).

class xoutil.fp.option.Just(*args)
A wrapper for valid results.

class xoutil.fp.option.Maybe(*args)
Wrapper for optional values.

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a
(represented as Just a), or it is empty (represented as Nothing). Using Maybe‘ is a good way to deal with
errors or exceptional cases without resorting to drastic measures such as error. In this implementation we make
a variation where a Wrong object represents a missing (with special value Nothing) or an improper value
(including errors).

See descendant classes Just and Wrong for more information.

This implementation combines Maybe and Either Haskell data types. Maybe is a means of being explicit
that you are not sure that a function will be successful when it is executed. Conventionally, the usage of Either
for errors uses Right when the computation is successful, and Left for failing scenarios.

In this implementation, Just:class‘ us used for equivalence with both Haskell Just and Right types; Wrong
is used with the special value Nothing and to encapsulate errors or incorrect values (Haskell Left).

Haskell:

data Maybe a = Nothing | Just a

either :: (a -> c) -> (b -> c) -> Either a b -> c

Case analysis for the Either type. If the value is Left a, apply the first function to a; if it is Right b, apply the
second function to b.

classmethod choose(*types)
Decorator to force Maybe values constraining to expecting types.

For example, a function that return a collection (tuple or list) if valid or False if not, if not decorated could
be ambiguous for an empty collection:

>>> @Just.choose(tuple, list)
... def check_range(values, min, max):
... if isinstance(values, (tuple, list)):
... return [v for v in values if min <= v <= max]
... else:
... return False

>>> check_range(range(10), 7, 17)
[7, 8, 9]

>>> check_range(range(10), 17, 27)
Just([])

2.15. xoutil.fp – Functional Programming in Python 49

xoutil Documentation, Release 1.8.0

>>> check_range(set(range(10)), 7, 17)
False

classmethod compel(value)
Coerce to the correspondent logical Boolean value.

Just is logically true, and Wrong is false.

For example:

>>> Just.compel([1])
[1]

>>> Just.compel([])
Just([])

>>> Wrong.compel([1])
Wrong([1])

>>> Wrong.compel([])
[]

classmethod triumph(value)
Coerce to a logical Boolean value.

A wrapper Just is logically true, and Wrong is false.

For example:

>>> Just.triumph([1])
[1]

>>> Just.triumph([])
Just([])

>>> Wrong.triumph([1])
Wrong([1])

>>> Wrong.triumph([])
[]

class xoutil.fp.option.Wrong(*args)
A wrapper for invalid results.

When encapsulation errors, the current trace-back is properly encapsulated using xoutil.eight.
exceptions module features.

TODO: Use naught or Left instead.

xoutil.fp.option.false = Wrong(False)
A Wrong special singleton encapsulating the False value.

xoutil.fp.option.none = Wrong(None)
A Wrong special singleton encapsulating the None value.

xoutil.fp.option.take(value)
Extract a value.

xoutil.fp.option.true = Just(True)
A Just special singleton encapsulating the True value.

50 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Further Notes

It could be thought that this kind of concept is useless in Python because the dynamic nature of the language, but
always there are certain logic systems that need to wrap “correct” false values and “incorrect” true values.

Also, in functional programming, errors can be reasoned in a new way: more like as error values than in exception
handling. Where the Maybe type expresses the failure possibility through Wrong instances encapsulating errors.

When receiving a Wrong instance encapsulating an error, and want to recover the exception propagation style -
instead of continue in pure functional programming-, to re-raise the exception, instead the raise Python statement, use
throw().

See https://en.wikipedia.org/wiki/Monad_%28functional_programming%29#The_Maybe_monad

xoutil.fp.prove - Prove validity of values

Proving success or failure of a function call has two main patterns:

1. Predicative: a function call returns one or more values indicating a failure, for example method find in strings
returns -1 if the sub-string is not found. In general this pattern considers a set of values as logical Boolean true,
an other set false.

Example:

index = s.find('x')
if index >= 0:

... # condition of success
else:

... # condition of failure

2. Disruptive: a function call throws an exception on a failure breaking the normal flow of execution, for example
method index in strings.

Example:

try:
index = s.index('x)

except ValueError:
... # condition of failure

else:
... # condition of success

The exception object contains the semantics of the “”anomalous condition”. Exception handling can be used as
flow control structures for execution context inter-layer processing, or as a termination condition.

Module content

Validity proofs for data values.

There are some basic helper functions:

• predicative() wraps a function in a way that a logical false value is returned on failure. If an exception is
raised, it is returned wrapped as an special false value. See Maybe monad for more information.

• vouch() wraps a function in a way that an exception is raised if an invalid value (logical false by default) is
returned. This is useful to call functions that use “special” false values to signal a failure.

2.15. xoutil.fp – Functional Programming in Python 51

https://en.wikipedia.org/wiki

xoutil Documentation, Release 1.8.0

• enfold() creates a decorator to convert a function to use either the predicative() or the vouch()
protocol.

New in version 1.8.0.

xoutil.fp.prove.enfold(checker)
Create a decorator to execute a function inner a safety wrapper.

Parameters checker – Could be any function to enfold, but it’s intended mainly for
predicative() or vouch() functions.

In the following example, the semantics of this function can be seen. The definition:

>>> @enfold(predicative)
... def test(x):
... return 1 <= x <= 10

>>> test(5)
5

It is equivalent to:

>>> def test(x):
... return 1 <= x <= 10

>>> predicative(test, 5)
5

In other hand:

>>> @enfold(predicative)
... def test(x):
... return 1 <= x <= 10

>>> test(15)
5

xoutil.fp.prove.predicative(function, *args, **kwds)
Call a function in a safety wrapper returning a false value if fail.

This converts any function into a predicate. A predicate can be thought as an operator or function that returns a
value that is either true or false.

Predicates are sometimes used to indicate set membership: on certain occasions it is inconvenient or impossible
to describe a set by listing all of its elements. Thus, a predicate P(x) will be true or false, depending on whether
x belongs to a set.

If the argument function validates its arguments, return a valid true value. There are two special conditions:
first, a value treated as false for Python conventions (for example, 0, or an empty string); and second, when an
exception is raised; in both cases the predicate will return an instance of Maybe.

xoutil.fp.prove.vouch(function, *args, **kwds)
Call a function in a safety wrapper raising an exception if it fails.

When the wrapped function fails, an exception must be raised. A predicate fails when it returns a false value.
To avoid treat false values of some types as fails, use Just to return that values wrapped.

xoutil.fp.tools – High-level pure function tools

Tools for working with functions in a more “pure” way.

52 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

class xoutil.fp.tools.compose(*funcs)
Composition of several functions.

Functions are composed right to left. A composition of zero functions gives back the identity() function.

Rules must be fulfilled (those inner all):

>>> x = 15
>>> f, g, h = x.__add__, x.__mul__, x.__xor__
>>> all((compose() is identity,
...
... # identity functions are optimized
... compose(identity, f, identity) is f,
...
... compose(f) is f,
... compose(g, f)(x) == g(f(x)),
... compose(h, g, f)(x) == h(g(f(x)))))
True

If any “intermediate” function returns an instance of:

•pos_args: it’s expanded as variable positional arguments to the next function.

•kw_args: it’s expanded as variable keyword arguments to the next function.

•full_args: it’s expanded as variable positional and keyword arguments to the next function.

The expected usage of these is not to have function return those types directly, but to use them when composing
functions that return tuples and expect tuples.

xoutil.fp.tools.identity(arg)
Returns its argument unaltered.

class xoutil.fp.tools.pos_args
Mark variable number positional arguments (see fargs).

class xoutil.fp.tools.kw_args
Mark variable number keyword arguments (see fargs).

class xoutil.fp.tools.full_args
Mark variable number arguments for composition.

Pair containing positional and keyword (args, kwds) arguments.

In standard functional composition, the result of a function is considered a single value to be use as the next
function argument. You can override this behaviour returning one instance of pos_args, kw_args, or this
class; in order to provide multiple arguments to the next call.

Since types are callable, you may use it directly in compose() instead of changing your functions to returns
the instance of one of these classes:

>>> def join_args(*args):
... return ' -- '.join(str(arg) for arg in args)

>>> compose(join_args, pos_args, list, range)(2)
'0 -- 1'

Without 'pos_args', it prints the list
>>> compose(join_args, list, range)(2)
'[0, 1]'

2.15. xoutil.fp – Functional Programming in Python 53

xoutil Documentation, Release 1.8.0

xoutil.fs – file system utilities

File system utilities.

This module contains file-system utilities that could have side-effects. For path-handling functions that have no side-
effects look at xoutil.fs.path.

xoutil.fs.ensure_filename(filename, yields=False)
Ensures the existence of a file with a given filename.

If the filename is taken and is not pointing to a file (or a link to a file) an OSError is raised. If exist_ok is False
the filename must not be taken; an OSError is raised otherwise.

The function creates all directories if needed. See makedirs() for restrictions.

If yields is True, returns the file object. This way you may open a file for writing like this:

with ensure_filename('/tmp/good-name-87.txt', yields=True) as fh:
fh.write('Do it!')

The file is open in mode ‘w+b’.

New in version 1.6.1: Added parameter yield.

xoutil.fs.imap(func, pattern)
Yields func(file_0, stat_0), func(file_1, stat_1), ... for each dir path. The pattern may contain:

•Simple shell-style wild-cards à la fnmatch.

•Regex if pattern starts with ‘(?’. Expressions must be valid, as in “(?:[^.].*)$” or “(?i).*.jpe?g$”. Remem-
ber to add the end mark ‘$’ if needed.

xoutil.fs.iter_dirs(top=’.’, pattern=None, regex_pattern=None, shell_pattern=None)
Iterate directories recursively.

The params have analagous meaning that in iter_files() and the same restrictions.

xoutil.fs.iter_files(top=’.’, pattern=None, regex_pattern=None, shell_pattern=None, fol-
lowlinks=False, maxdepth=None)

Iterate filenames recursively.

Parameters

• top – The top directory for recurse into.

• pattern – A pattern of the files you want to get from the iterator. It should be a string. If
it starts with “(?” it will be regarded as a regular expression, otherwise a shell pattern.

• regex_pattern – An alternative to pattern. This will always be regarded as a regular
expression.

• shell_pattern – An alternative to pattern. This should be a shell pattern.

• followlinks – The same meaning that in os.walk.

New in version 1.2.1.

• maxdepth – Only files above this level will be yielded. If None, no limit is placed.

New in version 1.2.1.

Warning: It’s an error to pass more than pattern argument.

54 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

xoutil.fs.listdir(path)
Same as os.listdir but normalizes path and raises no error.

xoutil.fs.rmdirs(top=’.’, pattern=None, regex_pattern=None, shell_pattern=None, exclude=None,
confirm=None)

Removes all empty dirs at top.

Parameters

• top – The top directory to recurse into.

• pattern – A pattern of the dirs you want to remove. It should be a string. If it starts with
“(?” it will be regarded as a regular expression, otherwise a shell pattern.

• exclude – A pattern of the dirs you DON’T want to remove. It should be a string. If it
starts with “(?” it will be regarded as a regular expression, otherwise a shell pattern. This is
a simple commodity to have you not to negate complex patterns.

• regex_pattern – An alternative to pattern. This will always be regarded as a regular
expression.

• shell_pattern – An alternative to pattern. This should be a shell pattern.

• confirm – A callable that accepts a single argument, which is the path of the directory
to be deleted. confirm should return True to allow the directory to be deleted. If confirm is
None, then all matched dirs are deleted.

Note: In order to avoid common mistakes we won’t attempt to remove mount points.

New in version 1.1.3.

xoutil.fs.stat(path)
Return file or file system status.

This is the same as the function os.stat but raises no error.

xoutil.fs.walk_up(start, sentinel)
Given a start directory walk-up the file system tree until either the FS root is reached or the sentinel is found.

The sentinel must be a string containing the file name to be found.

Warning: If sentinel is an absolute path that exists this will return start, no matter what start is (in windows
this could be even different drives).

If start path exists but is not a directory an OSError is raised.

xoutil.fs.concatfiles(*files, target)
Concat several files to a single one.

Each positional argument must be either:

•a file-like object (ready to be passed to shutil.copyfileobj())

•a string, the file path.

The last positional argument is the target. If it’s file-like object it must be open for writing, and the caller is the
responsible for closing it.

Alternatively if there are only two positional arguments and the first is a collection, the sources will be the
members of the first argument.

2.16. xoutil.fs – file system utilities 55

https://docs.python.org/3.4/library/shutil.html#shutil.copyfileobj

xoutil Documentation, Release 1.8.0

xoutil.fs.makedirs(path, mode=0o777, exist_ok=False)
Recursive directory creation function. Like os.mkdir(), but makes all intermediate-level directories needed
to contain the leaf directory.

The default mode is 0o777 (octal). On some systems, mode is ignored. Where it is used, the current umask
value is first masked out.

If exist_ok is False (the default), an OSError is raised if the target directory already exists.

Note: makedirs() will become confused if the path elements to create include os.pardir (eg. ”..” on
UNIX systems).

This function handles UNC paths correctly.

Changed in version 1.6.1: Behaves as Python 3.4.1.

Before Python 3.4.1 (ie. xoutil 1.6.1), if exist_ok was True and the directory existed, makedirs() would
still raise an error if mode did not match the mode of the existing directory. Since this behavior was impossible
to implement safely, it was removed in Python 3.4.1. See the original os.makedirs().

Contents:

xoutil.fs.path – Path utilities

Extensions to os.path

Functions inside this module must not have side-effects on the file-system. This module re-exports (without change)
several functions from the os.path standard module.

xoutil.fs.path.join(base, *extras)
Join two or more pathname components, inserting ‘/’ as needed.

If any component is an absolute path, all previous path components will be discarded.

Normalize path (after join parts), eliminating double slashes, etc.

xoutil.fs.path.fix_encoding(name, encoding=None)
Fix encoding of a file system resource name.

encoding is ignored if name is already a str.

xoutil.fs.path.normalize_path(base, *extras)
Normalize path by:

•expanding ‘~’ and ‘~user’ constructions.

•eliminating double slashes

•converting to absolute.

xoutil.fs.path.shorten_module_filename(filename)
A filename, normally a module o package name, is shortened looking his head in all python path.

xoutil.fs.path.shorten_user(filename)
A filename is shortened looking for the (expantion) $HOME in his head and replacing it by ‘~’.

xoutil.fs.path.rtrim(path, n=1)
Trims the last n components of the pathname path.

This basically applies n times the function os.path.dirname to path.

path is normalized before proceeding (but not tested to exists).

56 Chapter 2. Contents

https://docs.python.org/3.4/library/os.html#os.mkdir
https://docs.python.org/3.4/library/exceptions.html#OSError
https://docs.python.org/3.4/library/os.html#os.pardir
https://docs.python.org/3.4/library/os.html#os.makedirs
https://docs.python.org/3.4/library/os.path.html#module-os.path

xoutil Documentation, Release 1.8.0

Changed in version 1.5.5: n defaults to 1. In this case rtrim is identical to os.path.dirname().

Example:

>>> rtrim('/tmp/a/b/c/d', 3)
'/tmp/a'

It does not matter if `/` is at the end
>>> rtrim('/tmp/a/b/c/d/', 3)
'/tmp/a'

xoutil.future - Extend standard modules with “future” features

Extend standard modules including “future” features in current versions.

Version 3 introduce several concepts in standard modules. Sometimes these features are implemented in the evolution
of 2.7.x versions. By using sub-modules, these differences can be avoided transparently. For example, you can import
xoutil.future.collections.UserDict in any version, that it’s equivalent to Python 3 collections.
UserDict, but it don’t exists in Python 2.

New in version 1.7.2.

Contents

xoutil.future.codecs - Codec registry, base classes and tools

This module extends the standard library’s functools. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added the following features.

xoutil.future.codecs.force_encoding(encoding=None)
Validates an encoding value; if None use locale.getlocale()[1]; else return the same value.

New in version 1.2.0.

Changed in version 1.8.0: migrated to ‘future.codecs’

xoutil.future.codecs.safe_decode(s, encoding=None)
Similar to bytes decode method returning unicode.

Decodes s using the given encoding, or determining one from the system.

Returning type depend on python version; if 2.x is unicode if 3.x str.

New in version 1.1.3.

Changed in version 1.8.0: migrated to ‘future.codecs’

xoutil.future.codecs.safe_encode(u, encoding=None)
Similar to unicode encode method returning bytes.

Encodes u using the given encoding, or determining one from the system.

Returning type is always bytes; but in python 2.x is also str.

New in version 1.1.3.

Changed in version 1.8.0: migrated to ‘future.codecs’

2.17. xoutil.future - Extend standard modules with “future” features 57

https://docs.python.org/3.4/library/os.path.html#os.path.dirname
https://docs.python.org/3.4/library/collections.html#collections.UserDict
https://docs.python.org/3.4/library/collections.html#collections.UserDict
https://docs.python.org/3.4/library/functools.html#module-functools

xoutil Documentation, Release 1.8.0

xoutil.future.collections - High-performance container datatypes

This module extends the standard library’s collections. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since this is different in Python 2.7 and Python 3.3. Notably importing abc is
not available in Python 2.7.

We have backported several Python 3.3 features but not all.

class xoutil.future.collections.defaultdict
A hack for collections.defaultdict that passes the key and a copy of self as a plain dict (to avoid
infinity recursion) to the callable.

Examples:

>>> from xoutil.future.collections import defaultdict
>>> d = defaultdict(lambda key, d: 'a')
>>> d['abc']
'a'

Since the second parameter is actually a dict-copy, you may (naively) do the following:

>>> d = defaultdict(lambda k, d: d[k])
>>> d['abc']
Traceback (most recent call last):

...
KeyError: 'abc'

You may use this class as a drop-in replacement for collections.defaultdict:

>>> d = defaultdict(lambda: 1)
>>> d['abc']
1

class xoutil.future.collections.opendict
A dictionary implementation that mirrors its keys as attributes:

>>> d = opendict({'es': 'spanish'})
>>> d.es
'spanish'

>>> d['es'] = 'espanol'
>>> d.es
'espanol'

Setting attributes does not makes them keys.

class xoutil.future.collections.Counter(*args, **kwds)
Dict subclass for counting hashable items. Sometimes called a bag or multiset. Elements are stored as dictionary
keys and their counts are stored as dictionary values.

>>> c = Counter('abcdeabcdabcaba') # count elements from a string

>>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'

58 Chapter 2. Contents

https://docs.python.org/3.4/library/collections.html#module-collections

xoutil Documentation, Release 1.8.0

>>> sum(c.values()) # total of all counts
15

>>> c['a'] # count of letter 'a'
5
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
7
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b'
0

>>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a'
9

>>> c.clear() # empty the counter
>>> c
Counter()

Note: If a count is set to zero or reduced to zero, it will remain in the counter until the entry is deleted or the
counter is cleared:

>>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)]

Note: Backported from Python 3.3. In Python 3.3 this is an alias.

class xoutil.future.collections.OrderedDict(*args, **kwds)
Dictionary that remembers insertion order

Note: Backported from Python 3.3. In Python 3.3 this is an alias.

class xoutil.future.collections.OpenDictMixin
A mixin for mappings implementation that expose keys as attributes:

>>> from xoutil.objects import SafeDataItem as safe

>>> class MyOpenDict(OpenDictMixin, dict):
... __slots__ = safe.slot(OpenDictMixin.__cache_name__, dict)

>>> d = MyOpenDict({'es': 'spanish'})
>>> d.es
'spanish'

>>> d['es'] = 'espanol'
>>> d.es
'espanol'

2.17. xoutil.future - Extend standard modules with “future” features 59

xoutil Documentation, Release 1.8.0

When setting or deleting an attribute, the attribute name is regarded as key in the mapping if neither of the
following condition holds:

•The name is a slot.

•The object has a __dict__ attribute and the name is key there.

This mixin defines the following features that can be redefined:

_key2identifier

Protected method, receive a key as argument and return a valid identifier that is used instead the key
as an extended attribute.

__cache_name__

Inner field to store a cached mapping between actual keys and calculated attribute names. The field
must be always implemented as a SafeDataItem descriptor and must be of type dict. There are two
ways of implementing this:

•As a slot. The first time of this implementation is an example. Don’t forget to pass the second
parameter with the constructor dict.

•As a normal descriptor:

>>> from xoutil.objects import SafeDataItem as safe
>>> class MyOpenDict(OpenDictMixin, dict):
... safe(OpenDictMixin.__cache_name__, dict)

Classes or Mixins that can be integrated with dict by inheritance must not have a __slots__ definition. Be-
cause of that, this mixin must not declare any slot. If needed, it must be declared explicitly in customized
classed like in the example in the first part of this documentation or in the definition of opendict class.

class xoutil.future.collections.OrderedSmartDict(*args, **kwds)
A combination of the OrderedDict with the SmartDictMixin.

Warning: Initializing with kwargs does not ensure any initial ordering, since Python’s keyword dict is not
ordered. Use a list/tuple of pairs instead.

class xoutil.future.collections.SmartDictMixin
A mixin that extends the update method of dictionaries

Standard method allow only one positional argument, this allow several.

Note on using mixins in Python: method resolution order is calculated in the order of inheritance, if a mixin is
defined to overwrite behavior already existent, use first that classes with it. See SmartDict below.

class xoutil.future.collections.StackedDict(*args, **kwargs)
A multi-level mapping.

A level is entered by using the push() and is leaved by calling pop().

The property level returns the actual number of levels.

When accessing keys they are searched from the latest level “upwards”, if such a key does not exists in any level
a KeyError is raised.

Deleting a key only works in the current level; if it’s not defined there a KeyError is raised. This means that you
can’t delete keys from the upper levels without popping.

Setting the value for key, sets it in the current level.

60 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Changed in version 1.5.2: Based on the newly introduced ChainMap.

pop()
A deprecated alias for pop_level().

Deprecated since version 1.7.0.

push(*args, **kwargs)
A deprecated alias for push_level().

Deprecated since version 1.7.0.

level
Return the current level number.

The first level is 0. Calling push() increases the current level (and returns it), while calling pop()
decreases the current level (if possible).

peek()
Peeks the top level of the stack.

Returns a copy of the top-most level without any of the keys from lower levels.

Example:

>>> sdict = StackedDict(a=1, b=2)
>>> sdict.push(c=3) # it returns the level...
1
>>> sdict.peek()
{'c': 3}

pop_level()
Pops the last pushed level and returns the whole level.

If there are no levels in the stacked dict, a TypeError is raised.

Returns A dict containing the poped level.

push_level(*args, **kwargs)
Pushes a whole new level to the stacked dict.

Parameters

• args – Several mappings from which the new level will be initialled filled.

• kwargs – Values to fill the new level.

Returns The pushed level number.

class xoutil.future.collections.ChainMap(*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps
are specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating
new subcontexts, and a property for accessing all but the first mapping:

2.17. xoutil.future - Extend standard modules with “future” features 61

xoutil Documentation, Release 1.8.0

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain
at least one mapping.

new_child(m=None)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If m
is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict is
used, so that a call to d.new_child() is equivalent to: ChainMap({}, *d.maps). This method is
used for creating subcontexts that can be updated without altering values in any of the parent mappings.

Changed in version 1.5.5: The optional m parameter was added.

parents
Property returning a new ChainMap containing all of the maps in the current instance except the first one.
This is useful for skipping the first map in the search. Use cases are similar to those for the nonlocal key-
word used in nested scopes. A reference to d.parents is equivalent to: ChainMap(*d.maps[1:]).

Note: Backported from Python 3.4. In Python 3.4 this is an alias.

class xoutil.future.collections.PascalSet(*others)
Collection of unique integer elements (implemented with intervals).

PascalSet(*others) -> new set object

New in version 1.7.1.

class xoutil.future.collections.BitPascalSet(*others)
Collection of unique integer elements (implemented with bit-wise sets).

BitPascalSet(*others) -> new bit-set object

New in version 1.7.1.

xoutil.future.datetime - Basic date and time types

This module extends the standard library’s datetime. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

In Pytnon versions <= 3 date format fails for several dates, for example date(1800, 1, 1).strftime("%Y").
So, classes date and datetime are redefined if that case.

This problem could be solved by redefining the strftime function in the time module, because it is used for all strftime
methods; but (WTF), Python double checks the year (in each method and then again in time.strftime function).

xoutil.future.datetime.assure(obj)
Make sure that a date or datetime instance is a safe version.

With safe it’s meant that will use the adapted subclass on this module or the standard if these weren’t generated.

Classes that could be assured are: date, datetime, time and timedelta.

We added the following features.

xoutil.future.datetime.strfdelta(delta)
Format a timedelta using a smart pretty algorithm.

Only two levels of values will be printed.

62 Chapter 2. Contents

https://docs.python.org/3.4/library/datetime.html#module-datetime
https://docs.python.org/3.4/library/datetime.html#datetime.date
https://docs.python.org/3.4/library/datetime.html#datetime.datetime

xoutil Documentation, Release 1.8.0

>>> def t(h, m):
... return timedelta(hours=h, minutes=m)

>>> strfdelta(t(4, 56)) == '4h 56m'
True

xoutil.future.datetime.strftime(dt, fmt)
Used as strftime method of date and datetime redefined classes.

Also could be used with standard instances.

xoutil.future.datetime.get_month_first(ref=None)
Given a reference date, returns the first date of the same month. If ref is not given, then uses current date as the
reference.

xoutil.future.datetime.get_month_last(ref=None)
Given a reference date, returns the last date of the same month. If ref is not given, then uses current date as the
reference.

xoutil.future.datetime.get_next_month(ref=None, lastday=False)
Get the first or last day of the next month.

If lastday is False return the first date of the next month. Otherwise, return the last date.

The next month is computed with regards to a reference date. If ref is None, take the current date as the reference.

Examples:

>>> get_next_month(date(2017, 1, 23))
date(2017, 2, 1)

>>> get_next_month(date(2017, 1, 23), lastday=True)
date(2017, 2, 28)

New in version 1.7.3.

xoutil.future.datetime.is_full_month(start, end)
Returns true if the arguments comprises a whole month.

class xoutil.future.datetime.flextime

xoutil.future.datetime.daterange([start], stop[, step])
Similar to standard ‘range’ function, but for date objets.

Returns an iterator that yields each date in the range of [start, stop), not including the stop.

If start is given, it must be a date (or datetime) value; and in this case only stop may be an integer meaning the
numbers of days to look ahead (or back if stop is negative).

If only stop is given, start will be the first day of stop’s month.

step, if given, should be a non-zero integer meaning the numbers of days to jump from one date to the next.
It defaults to 1. If it’s positive then stop should happen after start, otherwise no dates will be yielded. If it’s
negative stop should be before start.

As with range, stop is never included in the yielded dates.

class xoutil.future.datetime.DateField(name, nullable=False)
A simple descriptor for dates.

Ensures that assigned values must be parseable dates and parses them.

2.17. xoutil.future - Extend standard modules with “future” features 63

xoutil Documentation, Release 1.8.0

class xoutil.future.datetime.TimeSpan(start_date=None, end_date=None)
A continuous span of time.

Time spans objects are iterable. They yield exactly two times: first the start date, and then the end date:

>>> ts = TimeSpan('2017-08-01', '2017-09-01')
>>> tuple(ts)
(date(2017, 8, 1), date(2017, 9, 1))

Time spans objects have two items:

>>> ts[0]
date(2017, 8, 1)

>>> ts[1]
date(2017, 9, 1)

>>> ts[:]
(date(2017, 8, 1), date(2017, 9, 1))

Two time spans are equal if their start_date and end_date are equal. When comparing a time span with a date,
the date is coerced to a time span (from_date()).

A time span with its start set to None is unbound to the past. A time span with its end set to None is unbound to
the future. A time span that is both unbound to the past and the future contains all possible dates. A time span
that is not unbound in any direction is bound .

A bound time span is valid if its start date comes before its end date.

Time spans can intersect, compared for containment of dates and by the subset/superset order operations
(<=, >=). In this regard, they represent the set of dates between start and end, inclusively.

Warning: Time spans don’t implement the union or difference operations expected in sets because the
difference/union of two span is not necessarily continuous.

classmethod from_date(date)
Return a new time span that covers a single date.

past_unbound
True if the time span is not bound into the past.

future_unbound
True if the time span is not bound into the future.

unbound
True if the time span is unbound into the past or unbount into the future or both.

bound
True if the time span is not unbound.

valid
A bound time span is valid if it starts before it ends.

Unbound time spans are always valid.

__le__(other)
True if other is a superset.

issubset()
An alias for __le__().

64 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

__ge__(other)
True if other is a subset.

issuperset()
An alias for __ge__().

covers()
An alias for __ge__().

isdisjoint(other)

overlaps(other)
Test if the time spans overlaps.

__and__(other)
Get the time span that is the intersection with another time span.

If two time spans don’t overlap, return the empty time span.

If other is not a TimeSpan we try to create one. If other is a date, we create the TimeSpan that starts and
end that very day. Other types are passed unchanged to the constructor.

__mul__()
An alias for __and__().

intersection(*others)
Return self [& other1 & ...].

EmptyTimeSpan
The empty time span. It’s not an instance of TimeSpan but engage set-like operations: union, intersection, etc.

No date is a member of the empty time span. The empty time span is a proper subset of any time span. It’s only
a superset of itself. It’s not a proper superset of any other time span nor itself.

This instance is a singleton. However, if you pickle it with protocol 1 and unpickle it, you’ll lose that property.
It’s best to test with the equality operator ==.

xoutil.future.functools - Higher-order functions and callable objects

This module extends the standard library’s functools. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added the following features.

class xoutil.future.functools.ctuple
Simple tuple marker for compose().

Since is a callable you may use it directly in compose instead of changing your functions to returns ctuples
instead of tuples:

>>> def compat_print(*args):
... for arg in args:
... print(arg)

>>> compose(compat_print, ctuple, list, range, math=False)(3)
0
1
2

Without ctuple prints the list

2.17. xoutil.future - Extend standard modules with “future” features 65

https://docs.python.org/3.4/library/functools.html#module-functools

xoutil Documentation, Release 1.8.0

>>> compose(compat_print, list, range, math=False)(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

xoutil.future.functools.compose(*funcs, math=True)
Returns a function that is the composition of several callables.

By default compose behaves like mathematical function composition: this is to say that compose(f1, ...
fn) is equivalent to lambda _x: fn(...(f1(_x))...).

If any “intermediate” function returns a ctuple it is expanded as several positional arguments to the next
function.

Changed in version 1.5.5: At least a callable must be passed, otherwise a TypeError is raised. If a single callable
is passed it is returned without change.

Parameters math – Indicates if compose should behave like mathematical function composition:
last function in funcs is applied last. If False, then the last function in func is applied first.

xoutil.future.functools.power(*funcs, times)
Returns the “power” composition of several functions.

Examples:

>>> import operator
>>> f = power(partial(operator.mul, 3), 3)
>>> f(23) == 3*(3*(3*23))
True

>>> power(operator.neg)
Traceback (most recent call last):
...
TypeError: power() takes at least 2 arguments (1 given)

class xoutil.future.functools.lwraps(f, n, *, name=None, doc=None, wrapped=None)
Lambda wrapper.

Useful for decorate lambda functions with name and documentation.

As positional arguments could be passed the function to be decorated and the name in any order. So the next
two identity definitions are equivalents:

>>> from xoutil.future.functools import lwraps as lw

>>> identity = lw('identity', lambda arg: arg)

>>> identity = lw(lambda arg: arg, 'identity')

As keyword arguments could be passed some special values, and any number of literal values to be assigned:

•name: The name of the function (__name__); only valid if not given as positional argument.

•doc: The documentation (__doc__ field).

•wrapped: An object to extract all values not yet assigned. These values are (‘__module__’, ‘__name__’
and ‘__doc__’) to be assigned, and ‘__dict__’ to be updated.

If the function to decorate is present in the positional arguments, this same argument function is directly returned
after decorated; if not a decorator is returned similar to standard wraps().

For example:

66 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> from xoutil.future.functools import lwraps as lw

>>> is_valid_age = lw('is-valid-human-age', lambda age: 0 < age <= 120,
... doc=('A predicate to evaluate if an age is '
... 'valid for a human being.')

>>> @lw(wrapped=is_valid_age)
... def is_valid_working_age(age):
... return 18 < age <= 70

>>> is_valid_age(16)
True

>>> is_valid_age(200)
False

>>> is_valid_working_age(16)
False

New in version 1.7.0.

xoutil.future.functools.curry(f)
Return a function that automatically ‘curries’ is positional arguments.

Example:

>>> add = curry(lambda x, y: x + y)
>>> add(1)(2)
3

>>> add(1, 2)
3

>>> add()()()(1, 2)
3

We have backported several Python 3.3 features but maybe not all.

xoutil.future.functools.update_wrapper(wrapper, wrapped, as-
signed=WRAPPER_ASSIGNMENTS, up-
dated=WRAPPER_UPDATES)

Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify
which attributes of the original function are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the corresponding attributes from the original
function. The default values for these arguments are the module level constants WRAPPER_ASSIGNMENTS
(which assigns to the wrapper function’s __name__, __module__, __annotations__ and __doc__, the docu-
mentation string) and WRAPPER_UPDATES (which updates the wrapper function’s __dict__, i.e. the instance
dictionary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching decorator
such as lru_cache()), this function automatically adds a __wrapped__ attribute to the wrapper that refers to
the original function.

The main intended use for this function is in decorator functions which wrap the decorated function and return
the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the wrapper
definition rather than the original function definition, which is typically less than helpful.

update_wrapper() may be used with callables other than functions. Any attributes named in assigned
or updated that are missing from the object being wrapped are ignored (i.e. this function will not attempt to

2.17. xoutil.future - Extend standard modules with “future” features 67

xoutil Documentation, Release 1.8.0

set them on the wrapper function). AttributeError is still raised if the wrapper function itself is missing any
attributes named in updated.

xoutil.future.inspect - Inspect live objects

This module extends the standard library’s functools. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added the following features.

xoutil.future.inspect.get_attr_value(obj, name, *default)
Get a named attribute from an object in a safe way.

Similar to getattr but without triggering dynamic look-up via the descriptor protocol, __getattr__ or __getat-
tribute__ by using getattr_static().

xoutil.future.inspect.type_name(*args, **kw)
Return the internal name for a type or a callable.

This function is safe. If :param obj: is not an instance of a proper type then returns the following depending on
:param affirm:

•If False returns None.

•If True convert a single object to its type before returns the name, but if is a tuple, list or set; returns a
string with a representation of contained types.

Examples:

>>> safe_name(int)
'int'

>>> safe_name(0) is None
True

>>> safe_name(0, affirm=True)
'int'

>>> safe_name((0, 1.1)) is None
True

>>> safe_name((0, 1.1), affirm=True)
'(int, float)'

We have backported several Python 3.3 features but maybe not all (some protected structures are not presented in this
documentation).

xoutil.future.inspect.getfullargspec(func)

xoutil.future.inspect.getattr_static(obj, attr, default=<object object>)
Retrieve attributes without triggering dynamic lookup via the descriptor protocol, __getattr__ or __getat-
tribute__.

Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically created
attributes) and may find attributes that getattr can’t (like descriptors that raise AttributeError). It can also return
descriptor objects instead of instance members in some cases. See the documentation for details.

68 Chapter 2. Contents

https://docs.python.org/3.4/library/functools.html#module-functools

xoutil Documentation, Release 1.8.0

xoutil.future.json - Encode and decode the JSON format

This module extends the standard library’s json. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added the following features.

class xoutil.future.json.JSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None, separa-
tors=None, encoding=’utf-8’, default=None)

Extensible JSON <http://json.org> encoder for Python data structures.

Supports the following objects and types by default:

Python JSON
dict object
list, tuple array
str, unicode string
int, long, float number
True true
False false
None null

To extend this to recognize other objects, subclass and implement a .default() method with another method
that returns a serializable object for o if possible, otherwise it should call the superclass implementation (to raise
TypeError).

Xoutil extends this class by supporting the following data-types:

•datetime, date and time values, which are translated to strings using ISO format.

•Decimal values, which are represented as a string representation.

•Iterables, which are represented as lists.

xoutil.future.json.encode_string(string, ensure_ascii=True)
Return a JSON representation of a Python string.

Parameters ensure_ascii – If True, the output is guaranteed to be of type str with all incoming
non-ASCII characters escaped. If False, the output can contain non-ASCII characters.

xoutil.future.pprint - Extension to the data pretty printer

This modules includes all the Python’s standard library features in module pprint and adds the function
ppformat(), which just returns a string of the pretty-formatted object.

New in version 1.4.1.

xoutil.future.pprint.ppformat(obj)
Just like pprint() but always returning a result.

Returns The pretty formated text.

Return type unicode in Python 2, str in Python 3.

xoutil.future.subprocess - Extensions to subprocess stardard module

New in version 1.2.1.

2.17. xoutil.future - Extend standard modules with “future” features 69

https://docs.python.org/3.4/library/json.html#module-json
http://json.org
https://docs.python.org/3.4/library/pprint.html#module-pprint

xoutil Documentation, Release 1.8.0

This module contains extensions to the subprocess standard library module. It may be used as a replacement of
the standard.

xoutil.future.subprocess.call_and_check_output(args, *, stdin=None, shell=False)
This function combines the result of both call and check_output (from the standard library module).

Returns a tuple (retcode, output, err_output).

xoutil.future.textwrap - Text wrapping and filling

This module extends the standard library’s textwrap. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added the following features.

xoutil.future.textwrap.dedent(text, skip_firstline=False)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

If skip_firstline is True, the first line is separated from the rest of the body. This helps with docstrings that follow
PEP 257.

Warning: The skip_firstline argument is missing in standard library.

We have backported several Python 3.3 features but maybe not all.

xoutil.future.textwrap.indent(text, prefix, predicate=None)
Adds ‘prefix’ to the beginning of selected lines in ‘text’.

If ‘predicate’ is provided, ‘prefix’ will only be added to the lines where ‘predicate(line)’ is True. If ‘predicate’
is not provided, it will default to adding ‘prefix’ to all non-empty lines that do not consist solely of whitespace
characters.

Note: Backported from Python 3.3. In Python 3.3 this is an alias.

xoutil.future.threading - Higher-level threading interface

This module extends the standard library’s threading. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added the following features.

xoutil.future.threading.async_call(func, args=None, kwargs=None, callback=None, on-
error=None)

Executes a function asynchronously.

The function receives the given positional and keyword arguments

If callback is provided, it is called with a single positional argument: the result of calling func(*args, **kwargs).

If the called function ends with an exception and onerror is provided, it is called with the exception object.

70 Chapter 2. Contents

https://docs.python.org/3.4/library/subprocess.html#module-subprocess
https://docs.python.org/3.4/library/textwrap.html#module-textwrap
https://www.python.org/dev/peps/pep-0257
https://docs.python.org/3.4/library/threading.html#module-threading

xoutil Documentation, Release 1.8.0

Returns An event object that gets signalled when the function ends its execution whether normally
or with an error.

Return type Event

xoutil.future.threading.sync_call(funcs, callback, timeout=None)
Calls several functions, each one in it’s own thread.

Waits for all to end.

Each time a function ends the callback is called (wrapped in a lock to avoid race conditions) with the result of
the as a single positional argument.

If timeout is not None it sould be a float number indicading the seconds to wait before aborting. Functions that
terminated before the timeout will have called callback, but those that are still working will be ignored.

Todo

Abort the execution of a thread.

Parameters funcs – A sequences of callables that receive no arguments.

xoutil.future.types - Names for built-in types and extensions

This module extends the standard library’s functools. You may use it as a drop-in replacement in many cases.

Avoid importing * from this module since could be different in Python 2.7 and Python 3.3.

We added mainly compatibility type definitions, those that each one could be in one version and not in other.

xoutil.future.types.new_class(name, bases=(), kwds=None, exec_body=None)
Create a class object dynamically using the appropriate metaclass.

New in version 1.5.5.

xoutil.future.types.prepare_class(name, bases=(), kwds=None)
Call the __prepare__ method of the appropriate metaclass.

Returns (metaclass, namespace, kwds) as a 3-tuple

metaclass is the appropriate metaclass namespace is the prepared class namespace kwds is an updated copy of
the passed in kwds argument with any ‘metaclass’ entry removed. If no kwds argument is passed in, this will be
an empty dict.

New in version 1.5.5.

xoutil.future.types.DictProxyType
alias of dictproxy

class xoutil.future.types.MappingProxyType
New in version 1.5.5.

Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that when
the mapping changes, the view reflects these changes.

Note: In Python 3.3+ this is an alias for types.MappingProxyType in the standard library.

2.17. xoutil.future - Extend standard modules with “future” features 71

https://docs.python.org/3.4/library/functools.html#module-functools
https://docs.python.org/3.4/library/types.html#types.MappingProxyType

xoutil Documentation, Release 1.8.0

class xoutil.future.types.SimpleNamespace
New in version 1.5.5.

A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace
object is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace(object):
def __init__(self, **kwargs):

self.__dict__.update(kwargs)
def __repr__(self):

keys = sorted(self.__dict__)
items = ("{}={!r}".format(k, self.__dict__[k]) for k in keys)
return "{}({})".format(type(self).__name__, ", ".join(items))

def __eq__(self, other):
return self.__dict__ == other.__dict__

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured
record type use namedtuple() instead.

Note: In Python 3.4+ this is an alias to types.SimpleNamespace.

class xoutil.future.types.DynamicClassAttribute(fget=None, fset=None, fdel=None,
doc=None)

Route attribute access on a class to __getattr__().

This is a descriptor, used to define attributes that act differently when accessed through an instance and through
a class. Instance access remains normal, but access to an attribute through a class will be routed to the class’s
__getattr__() method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with the same
name (see Enum for an example).

New in version 1.5.5.

Changed in version 1.8.0: Inherits from property

Note: The class Enum mentioned has not yet been back-ported.

Note: In Python version>=3.4 this is an alias to types.DynamicClassAttribute.

xoutil.html – Helpers for manipulating HTML

Deprecated since version 1.8.0. This module defines utilities to manipulate HTML.

This module backports several utilities from Python 3.2.

Because now we deprecated it, we moved here documentation to remove it in one shot.

72 Chapter 2. Contents

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/collections.html#collections.namedtuple
https://docs.python.org/3.4/library/types.html#types.SimpleNamespace
https://docs.python.org/3.4/reference/datamodel.html#object.__getattr__
https://docs.python.org/3.4/reference/datamodel.html#object.__getattr__
https://docs.python.org/3.4/library/exceptions.html#AttributeError
https://docs.python.org/3.4/library/enum.html#enum.Enum

xoutil Documentation, Release 1.8.0

xoutil.html.entities – Definitions of HTML general entities

This module defines tree dictionaries, name2codepoint, codepoint2name, and entitydefs.

entitydefs is used to provide the entitydefs attribute of the xoutil.html.parser.HTMLParser class. The
definition provided here contains all the entities defined by XHTML 1.0 that can be handled using simple textual
substitution in the Latin-1 character set (ISO-8859-1).

xoutil.html.entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

xoutil.html.name2codepoint
A dictionary that maps HTML entity names to the Unicode codepoints.

xoutil.html.codepoint2name
A dictionary that maps Unicode codepoints to HTML entity names

xoutil.html.parser – A simple parser that can handle HTML and XHTML

This module defines a class HTMLParser which serves as the basis for parsing text files formatted in HTML (Hyper-
Text Mark-up Language) and XHTML.

Warning: This module has not being made Python 2.7 and 3.2 compatible.

class xoutil.html.HTMLParser(strict=True)
Create a parser instance. If strict is True (the default), invalid HTML results in HTMLParseError exceptions
[1]. If strict is False, the parser uses heuristics to make a best guess at the intention of any invalid HTML it
encounters, similar to the way most browsers do. Using strict=False is advised.

An :class‘HTMLParser‘ instance is fed HTML data and calls handler methods when start tags, end tags, text,
comments, and other markup elements are encountered. The user should subclass HTMLParser and override its
methods to implement the desired behavior.

This parser does not check that end tags match start tags or call the end-tag handler for elements which are
closed implicitly by closing an outer element.

Changed in version 3.2: strict keyword added

class xoutil.html.HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing and strict is True. This
exception provides three attributes: msg is a brief message explaining the error, lineno is the number of the line
on which the broken construct was detected, and offset is the number of characters into the line at which the
construct starts.

xoutil.html.escape(s, quote=True)
Replace special characters “&”, “<” and “>” to HTML-safe sequences

If the optional flag quote is true (the default), the quotation mark characters, both double quote (”) and single
quote (‘) characters are also translated.

Sub-modules on this package

xoutil.html.entities – Definitions of HTML general entities

This module defines tree dictionaries, name2codepoint, codepoint2name, and entitydefs.

2.18. xoutil.html – Helpers for manipulating HTML 73

xoutil Documentation, Release 1.8.0

entitydefs is used to provide the entitydefs attribute of the xoutil.html.parser.HTMLParser class. The
definition provided here contains all the entities defined by XHTML 1.0 that can be handled using simple textual
substitution in the Latin-1 character set (ISO-8859-1).

xoutil.html.entities.entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

xoutil.html.entities.name2codepoint
A dictionary that maps HTML entity names to the Unicode codepoints.

xoutil.html.entities.codepoint2name
A dictionary that maps Unicode codepoints to HTML entity names

xoutil.html.parser – A simple parser that can handle HTML and XHTML

This module defines a class HTMLParser which serves as the basis for parsing text files formatted in HTML (Hyper-
Text Mark-up Language) and XHTML.

Warning: This module has not being made Python 2.7 and 3.2 compatible.

class xoutil.html.parser.HTMLParser(strict=True)
Create a parser instance. If strict is True (the default), invalid HTML results in HTMLParseError exceptions
[1]. If strict is False, the parser uses heuristics to make a best guess at the intention of any invalid HTML it
encounters, similar to the way most browsers do. Using strict=False is advised.

An :class‘HTMLParser‘ instance is fed HTML data and calls handler methods when start tags, end tags, text,
comments, and other markup elements are encountered. The user should subclass HTMLParser and override its
methods to implement the desired behavior.

This parser does not check that end tags match start tags or call the end-tag handler for elements which are
closed implicitly by closing an outer element.

Changed in version 3.2: strict keyword added

class xoutil.html.parser.HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing and strict is True. This
exception provides three attributes: msg is a brief message explaining the error, lineno is the number of the line
on which the broken construct was detected, and offset is the number of characters into the line at which the
construct starts.

xoutil.infinity - An infinite value

xoutil.infinity.Infinity
The positive infinite value. The negative infinite value is -Infinity.

These values are only sensible for comparison. Arithmetic is not supported.

The type of values that is comparable with Infinity is controlled by the ABC InfinityComparable.

class xoutil.infinity.InfinityComparable
Any type that can be sensibly compared to infinity.

All types in the number tower are always comparable.

Classes datetime.date, datetime.datetime, and datetime.timedelta are automatically regis-
tered.

74 Chapter 2. Contents

https://docs.python.org/3.4/library/numbers.html#numbers.Number
https://docs.python.org/3.4/library/datetime.html#datetime.date
https://docs.python.org/3.4/library/datetime.html#datetime.datetime
https://docs.python.org/3.4/library/datetime.html#datetime.timedelta

xoutil Documentation, Release 1.8.0

xoutil.iterators - Functions creating iterators for efficient loop-
ing

Several util functions for iterators

xoutil.iterators.dict_update_new(target, source, fail=False)
Update values in source that are new (not present) in target.

If fail is True and a value is already set, an error is raised.

xoutil.iterators.first_n(iterable, n=1, fill=Unset)
Takes the first n items from iterable.

If there are less than n items in the iterable and fill is Unset, a StopIteration exception is raised; otherwise it’s
used as a filling pattern as explained below.

Parameters

• iterable – An iterable from which the first n items should be collected.

• n (int) – The number of items to collect

• fill – The filling pattern to use. It may be:

– a collection, in which case first_n fills the last items by cycling over fill.

– anything else is used as the filling pattern by repeating.

Returns The first n items from iterable, probably with a filling pattern at the end.

Return type generator object

New in version 1.2.0.

Changed in version 1.4.0: The notion of collection for the fill argument uses xoutil.types.
is_collection() instead of probing for the __iter__ method.

Changed in version 1.7.2: The notion of collection for the fill argument uses isinstance(fill,
Iterable) replacing xoutil.types.is_collection(). We must be consistent with iterable argu-
ment that allow an string as a valid iterable and is_collection not.

xoutil.iterators.first_non_null(iterable, default=None)
Returns the first value from iterable which is non-null.

This is roughly the same as:

next((x for x in iter(iterable) if x), default)

New in version 1.4.0.

xoutil.iterators.slides(iterable, width=2, fill=None)
Creates a sliding window of a given width over an iterable:

>>> list(slides(range(1, 11)))
[(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]

If the iterator does not yield a width-aligned number of items, the last slice returned is filled with fill (by default
None):

>>> list(slides(range(1, 11), width=3))
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, None, None)]

2.20. xoutil.iterators - Functions creating iterators for efficient looping 75

https://docs.python.org/3.4/library/functions.html#int

xoutil Documentation, Release 1.8.0

Changed in version 1.4.0: If the fill argument is a collection is cycled over to get the filling, just like in
first_n().

Changed in version 1.4.2: The fill argument now defaults to None, instead of Unset.

xoutil.iterators.continuously_slides(iterable, width=2, fill=None)
Similar to slides() but moves one item at the time (i.e continuously).

fill is only used to fill the fist chunk if the iterable has less items than the width of the window.

Example (generate a texts tri-grams):

>>> slider = continuously_slides(str('maupassant'), 3)
>>> list(str('').join(chunk) for chunk in slider)
['mau', 'aup', 'upa', 'pas', 'ass', 'ssa', 'san', 'ant']

xoutil.iterators.ungroup(iterator)
Reverses the operation of itertools.groupby() (or similar).

The iterator should produce pairs of (_, xs); where xs is another iterator (or iterable).

It’s guaranteed that the iterator will be consumed at the boundaries of each pair, i.e. before taking another pair
(_, ys) from iterator the first xs will be fully yielded.

Demonstration:

>>> def groups():
... def chunk(s):
... for x in range(s, s+3):
... print('Yielding x:', x)
... yield x
...
... for g in range(2):
... print('Yielding group', g)
... yield g, chunk(g)

>>> list(ungroup(groups()))
Yielding group 0
Yielding x: 0
Yielding x: 1
Yielding x: 2
Yielding group 1
Yielding x: 1
Yielding x: 2
Yielding x: 3
[0, 1, 2, 1, 2, 3]

This is not the same as:

>>> import itertools
>>> xs = itertools.chain(*(xs for _, xs in groups()))
Yielding group 0
Yielding group 1

Notice that the iterator was fully consumed just to create the arguments to chain().

New in version 1.7.3.

xoutil.iterators.delete_duplicates(seq[, key=lambda x: x])
Remove all duplicate elements from seq.

76 Chapter 2. Contents

https://docs.python.org/3.4/library/itertools.html#itertools.groupby

xoutil Documentation, Release 1.8.0

Two items x and y are considered equal (duplicates) if key(x) == key(y). By default key is the identity
function.

Works with any sequence that supports len(), __getitem__(), and addition.

Note: seq.__getitem__ should work properly with slices.

The return type will be the same as that of the original sequence.

New in version 1.5.5.

Changed in version 1.7.4: Added the key argument. Clarified the documentation: seq should also implement the
__add__ method and that its __getitem__ method should deal with slices.

xoutil.iterators.iter_delete_duplicates(iter[, key=lambda x: x])
Yields non-repeating items from iter.

key has the same meaning as in delete_duplicates().

Examples:

>>> list(iter_delete_duplicates('AAAaBBBA'))
['A', 'a', 'B', 'A']

>>> list(iter_delete_duplicates('AAAaBBBA', key=lambda x: x.lower()))
['A', 'B', 'A']

New in version 1.7.4.

xoutil.iterators.fake_dict_iteritems(source)
Iterate (key, value) in a source fake mapping.

A fake mapping must define at least methods keys and __getitem__().

Warning: Deprecated since 1.7.0. This was actually in risk since 1.4.0.

xoutil.iterators.flatten(sequence, is_scalar=xoutil.types.is_scalar, depth=None)
Flatten-out a sequence.

It takes care of everything deemed a collection (i.e, not a scalar according to the callable passed in is_scalar
argument; if None, xoutil.types.is_scalar() is assumed):

>>> from xoutil.eight import range
>>> range_ = lambda *a: list(range(*a))
>>> tuple(flatten((1, range_(2, 5), range(5, 10))))
(1, 2, 3, 4, 5, 6, 7, 8, 9)

If depth is None the collection is flattened recursiverly until the “bottom” is reached. If depth is an integer then
the collection is flattened up to that level. depth=0 means not to flatten. Nested iterators are not “exploded” if
under the stated depth:

In the following doctest we use ``...range(...X)`` because the
string repr of range differs in Py2 and Py3k.

>>> tuple(flatten((range_(2), range(2, 4)), depth=0)) # doctest: +ELLIPSIS
([0, 1], ...range(2, 4))

2.20. xoutil.iterators - Functions creating iterators for efficient looping 77

https://docs.python.org/3.4/library/functions.html#len
https://docs.python.org/3.4/reference/datamodel.html#object.__getitem__
https://docs.python.org/3.4/reference/datamodel.html#object.__add__
https://docs.python.org/3.4/reference/datamodel.html#object.__getitem__

xoutil Documentation, Release 1.8.0

>>> tuple(flatten((range(2), range_(2, 4)), depth=0)) # doctest: +ELLIPSIS
(...range(...2), [2, 3])

xoutil.iterators.zip([iter1[, iter2[, ...]]])
Return a zip-like object whose next() method returns a tuple where the i-th element comes from the i-th iterable
argument. The next() method continues until the shortest iterable in the argument sequence is exhausted and
then it raises StopIteration.

This method is actually the standard itertools.izip() when in Python 2.7, and the builtin zip when in
Python 3.

xoutil.iterators.map(func, *iterables)
Make an iterator that computes the function using arguments from each of the iterables. It stops when the
shortest iterable is exhausted instead of filling in None for shorter iterables.

This method is actually the stardard itertools.imap when in Python 2.7, and the builtin map when in
Python 3.

xoutil.iterators.zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted.

If one of the iterables is potentially infinite, then the zip_longest() function should be wrapped with some-
thing that limits the number of calls (for example islice() or takewhile()). If not specified, fillvalue
defaults to None.

This function is actually an alias to itertools.izip_longest() in Python 2.7, and an alias to
itertools.zip_longest() in Python 3.3.

xoutil.keywords – Tools for manage Python keywords as names

Tools for manage Python keywords as names.

Reserved Python keywords can’t be used as attribute names, so this module functions use the convention of rename
the name using an underscore as suffix when a reserved keyword is used as name.

xoutil.keywords.delkwd(obj, name)
Like delattr but taking into account Python keywords.

xoutil.keywords.getkwd(obj, name, default=None)
Like getattr but taking into account Python keywords.

xoutil.keywords.kwd_deleter(obj)
partial(delkwd, obj)

xoutil.keywords.kwd_getter(obj)
partial(getkwd, obj)

xoutil.keywords.kwd_setter(obj)
partial(setkwd, obj)

xoutil.keywords.org_kwd(name)
Remove the underscore suffix if name starts with a Python keyword.

xoutil.keywords.setkwd(obj, name, value)
Like setattr but taking into account Python keywords.

xoutil.keywords.suffix_kwd(name)
Add an underscore suffix if name if a Python keyword.

78 Chapter 2. Contents

https://docs.python.org/2.7/library/itertools.html#itertools.izip_longest
https://docs.python.org/3.4/library/itertools.html#itertools.zip_longest

xoutil Documentation, Release 1.8.0

xoutil.logger - Standard logger helpers

Usage:

logger.debug('Some debug message')

Basically you may request any of the loggers attribute/method and this module will return the logger’s attribute corre-
sponding to the loggers of the calling module. This avoids the boilerplate seen in most codes:

logger = logging.getLogger(__name__)

You may simply do:

from xoutil.logger import debug
debug('Some debug message')

The proper logger will be selected by this module.

Note: Notice this won’t configure any handler for you. Only the calling pattern is affected. You must configure your
loggers as usual.

xoutil.modules – Utilities for working with modules

Modules utilities.

xoutil.modules.copy_members(source=None, target=None)
Copy module members from source to target.

It’s common in xoutil package to extend Python modules with the same name, for example xoutil.datetime has all
public members of Python’s datetime. copy_members() can be used to copy all members from the original
module to the extended one.

Parameters

• source – string with source module name or module itself.

If not given, is assumed as the last module part name of target.

• target – string with target module name or module itself.

If not given, target name is looked in the stack of caller module.

Returns Source module.

Return type ModuleType

Warning: Implementation detail

Function used to inspect the stack is not guaranteed to exist in all implementations of Python.

xoutil.modules.customize(module, custom_attrs=None, meta=None)
Replaces a module by a custom one.

Injects all kwargs into the newly created module’s class. This allows to have module into which we may have
properties or other type of descriptors.

2.22. xoutil.logger - Standard logger helpers 79

xoutil Documentation, Release 1.8.0

Parameters

• module – The module object to customize.

• custom_attrs – A dictionary of custom attributes that should be injected in the cus-
tomized module.

New in version 1.4.2: Changes the API, no longer uses the **kwargs idiom for custom
attributes.

• meta – The metaclass of the module type. This should be a subclass of type. We will actu-
ally subclass this metaclass to properly inject custom_attrs in our own internal metaclass.

Returns A tuple of (module, customized, class) with the module in the first place, cus-
tomized will be True only if the module was created (i.e customize() is idempotent), and the
third item will be the class of the module (the first item).

xoutil.modules.force_module(ref=None)
Load a module from a string or return module if already created.

If ref is not specified (or integer) calling module is assumed looking in the stack.

Note: Implementation detail

Function used to inspect the stack is not guaranteed to exist in all implementations of Python.

xoutil.modules.get_module_path(module)
Gets the absolute path of a module.

Parameters module – Either module object or a (dotted) string for the module.

Returns The path of the module.

If the module is a package, returns the directory path (not the path to the __init__).

If module is a string and it’s not absolute, raises a TypeError.

xoutil.modules.modulemethod(func)
Decorator that defines a module-level method.

Simply a module-level method, will always receive a first argument self with the module object.

xoutil.modules.moduleproperty(getter, setter=None, deleter=None, doc=None, base=<type
‘property’>)

Decorator that creates a module-level property.

The module of the getter is replaced by a custom implementation of the module, and the property is injected to
the custom module’s class.

The parameter base serves the purpose of changing the base for the property. For instance, this allows you to
have memoized_properties at the module-level:

def memoized(self):
return self

memoized = moduleproperty(memoized, base=memoized_property)

xoutil.names – Utilities for handling objects names

A protocol to obtain or manage object names.

80 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

xoutil.names.nameof(*objects, depth=1, inner=False, typed=False, full=False, safe=False)
Obtain the name of each one of a set of objects.

New in version 1.4.0.

Changed in version 1.6.0: Keyword arguments are now keyword-only arguments. Support for several
objects Improved the semantics of parameter full. Added the safe keyword argument.

If no object is given, None is returned; if only one object is given, a single string is returned; otherwise a list of
strings is returned.

The name of an object is normally the variable name in the calling stack.

If the object is not present calling frame, up to five frame levels are searched. Use the depth keyword argument
to specify a different starting point and the search will proceed five levels from this frame up.

If the same object has several good names a single one is arbitrarily chosen.

Good names candidates are retrieved based on the keywords arguments full, inner, safe and typed.

If typed is True and the object is not a type name or a callable (see xoutil.future.inspect.
safe_name()), then the type of the object is used instead.

If inner is True we try to extract the name by introspection instead of looking for the object in the frame stack.

If full is True the full identifier of the object is preferred. In this case if inner is False the local-name for the
object is found. If inner is True, find the import-name.

If safe is True, returned value is converted -if it is not- into a valid Python identifier, though you should not trust
this identifier resolves to the value.

See the examples in the documentation.

••••xoutil.names.identifier_from(obj)
Build an valid identifier from the name extracted from an object.

New in version 1.5.6.

First, check if argument is a type and then returns the name of the type prefixed with _ if valid; otherwise calls
nameof function repeatedly until a valid identifier is found using the following order logic: inner=True,
without arguments looking-up a variable in the calling stack, and typed=True. Returns None if no valid
value is found.

Examples:

>>> identifier_from({})
'dict'

Use cases for getting the name of an object

The function nameof() is useful for cases when you get a value and you need a name. This is a common need when
doing framework-level code that tries to avoid repetition of concepts.

Solutions with nameof()

Properly calculate the tasks’ name in Celery applications

Celery warns about how to import the tasks. If in a module you import your task using an absolute import, and in
another module you import it using a relative import, Celery regards them as different tasks. You must either use a
consistent import style, or give a name for the task. Using nameof you can easily fix this problem.

2.24. xoutil.names – Utilities for handling objects names 81

http://celeryproject.org/

xoutil Documentation, Release 1.8.0

Assume you create a celapp.tasks.basic module with this code:

>>> def celery_task(celeryapp, *args, **kwargs):
... def decorator(func):
... from xoutil.names import nameof
... taskname = nameof(func, full=True, inner=True)
... return celeryapp.task(name=taskname, *args, **kwargs)(func)
... return decorator

>>> from celery import Celery
>>> app = Celery()
>>> @celery_task(app)
... def add(x, y):
... return x + y

Then importing the task directly in a shell will have the correct name:

>>> from celapp.tasks.basic import add
>>> add.name
'celapp.tasks.basic.add'

Another module that imports the task will also see the proper name. Say you have the module celapp.consumer:

>>> from .tasks import basic

>>> def get_name(taskname):
... task = getattr(basic, taskname)
... return task.name

Then:

>>> from celapp.consumer import get_name
>>> get_name('add')
'celapp.tasks.basic.add'

Despite that you imported the basic module with a relative import the name is fully calculated.

xoutil.objects - Functions for dealing with objects

Several utilities for objects in general.

xoutil.objects.validate_attrs(source, target, force_equals=(), force_differents=())
Makes a ‘comparison’ of source and target by its attributes (or keys).

This function returns True if and only if both of these tests pass:

•All attributes in force_equals are equal in source and target

•All attributes in force_differents are different in source and target

For instance:

>>> class Person(object):
... def __init__(self, **kwargs):
... for which in kwargs:
... setattr(self, which, kwargs[which])

>>> source = Person(name='Manuel', age=33, sex='male')

82 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> target = {'name': 'Manuel', 'age': 4, 'sex': 'male'}

>>> validate_attrs(source, target, force_equals=('sex',),
... force_differents=('age',))
True

>>> validate_attrs(source, target, force_equals=('age',))
False

If both force_equals and force_differents are empty it will return True:

>>> validate_attrs(source, target)
True

xoutil.objects.iterate_over(source, *keys)
Yields pairs of (key, value) for of all keys in source.

If any key is missing from source is ignored (not yielded).

If source is a collection, iterate over each of the items searching for any of keys. This is not recursive.

If no keys are provided, return an “empty” iterator – i.e will raise StopIteration upon calling next.

New in version 1.5.2.

xoutil.objects.smart_getter(obj, strict=False)
Returns a smart getter for obj.

If obj is a mapping, it returns the .get() method bound to the object obj, otherwise it returns a partial of
getattr on obj.

Parameters strict – Set this to True so that the returned getter checks that keys/attrs exists. If
strict is True the getter may raise a KeyError or an AttributeError.

Changed in version 1.5.3: Added the parameter strict.

xoutil.objects.smart_getter_and_deleter(obj)
Returns a function that get and deletes either a key or an attribute of obj depending on the type of obj.

If obj is a collections.Mapping it must be a collections.MutableMapping.

xoutil.objects.popattr(obj, name, default=None)
Looks for an attribute in the obj and returns its value and removes the attribute. If the attribute is not found,
default is returned instead.

Examples:

>>> class Foo(object):
... a = 1
>>> foo = Foo()
>>> foo.a = 2
>>> popattr(foo, 'a')
2
>>> popattr(foo, 'a')
1
>>> popattr(foo, 'a') is None
True

xoutil.objects.setdefaultattr(obj, name, value)
Sets the attribute name to value if it is not set:

2.25. xoutil.objects - Functions for dealing with objects 83

xoutil Documentation, Release 1.8.0

>>> class Someclass(object): pass
>>> inst = Someclass()
>>> setdefaultattr(inst, 'foo', 'bar')
'bar'

>>> inst.foo
'bar'

>>> inst.spam = 'egg'
>>> setdefaultattr(inst, 'spam', 'with ham')
'egg'

(New in version 1.2.1). If you want the value to be lazily evaluated you may provide a lazy-lambda:

>>> inst = Someclass()
>>> inst.a = 1
>>> def setting_a():
... print('Evaluating!')
... return 'a'

>>> setdefaultattr(inst, 'a', lazy(setting_a))
1

>>> setdefaultattr(inst, 'ab', lazy(setting_a))
Evaluating!
'a'

xoutil.objects.copy_class(cls, meta=None, ignores=None, new_attrs=None, new_name=None)
Copies a class definition to a new class.

The returned class will have the same name, bases and module of cls.

Parameters

• meta – If None, the type(cls) of the class is used to build the new class, otherwise this must
be a proper metaclass.

• ignores – A sequence of attributes names that should not be copied to the new class.

An item may be callable accepting a single argument attr that must return a non-null value
if the the attr should be ignored.

• new_attrs (dict) – New attributes the class must have. These will take precedence over
the attributes in the original class.

• new_name – The name for the copy. If not provided the name will copied.

New in version 1.4.0.

Changed in version 1.7.1: The ignores argument must an iterable of strings or callables. Removed the glob-
pattern and regular expressions as possible values. They are all possible via the callable variant.

New in version 1.7.1: The new_name argument.

xoutil.objects.fulldir(obj)
Return a set with all attribute names defined in obj

class xoutil.objects.classproperty
A descriptor that behaves like property for instances but for classes.

Example of its use:

84 Chapter 2. Contents

https://docs.python.org/3.4/library/stdtypes.html#dict

xoutil Documentation, Release 1.8.0

class Foobar(object):
@classproperty
def getx(cls):

return cls._x

A writable classproperty is difficult to define, and it’s not intended for that case because ‘setter’, and ‘deleter’
decorators can’t be used for obvious reasons. For example:

class Foobar(object):
x = 1
def __init__(self, x=2):

self.x = x
def _get_name(cls):

return str(cls.x)
def _set_name(cls, x):

cls.x = int(x)
name = classproperty(_get_name, _set_name)

New in version 1.4.1.

Changed in version 1.8.0: Inherits from property

xoutil.objects.get_first_of(sources, *keys, default=None, pred=None)
Return the value of the first occurrence of any of the specified keys in source that matches pred (if given).

Both source and keys has the same meaning as in iterate_over().

Parameters

• default – A value to be returned if no key is found in source.

• pred – A function that should receive a single value and return False if the value is not
acceptable, and thus get_first_of should look for another.

Changed in version 1.5.2: Added the pred option.

xoutil.objects.xdir(obj, filter=None, attr_filter=None, value_filter=None, getattr=None)
Return all (attr, value) pairs from obj that attr_filter(attr) and value_filter(value)
are both True.

Parameters

• obj – The object to be instrospected.

• filter – optional A filter that will be passed both the attribute name and it’s value as two
positional arguments. It should return True for attrs that should be yielded.

Note: If passed, both attr_filter and value_filter will be ignored.

• attr_filter – optional A filter for attribute names. Deprecated since 1.4.1

• value_filter – optional A filter for attribute values. Deprecated since 1.4.1

• getter – optional A function with the same signature that getattr to be used to get the
values from obj.

Deprecated since version 1.4.1: The use of params attr_filter and value_filter.

xoutil.objects.fdir(obj, filter=None, attr_filter=None, value_filter=None, getattr=None)
Similar to xdir() but yields only the attributes names.

2.25. xoutil.objects - Functions for dealing with objects 85

xoutil Documentation, Release 1.8.0

xoutil.objects.smart_copy(*sources, target, *, defaults=False)
Copies the first apparition of attributes (or keys) from sources to target.

Parameters

• sources – The objects from which to extract keys or attributes.

• target – The object to fill.

• defaults (Either a bool, a dictionary, an iterable or a
callable.) – Default values for the attributes to be copied as explained below.
Defaults to False.

Every sources and target are always positional arguments. There should be at least one source. target will
always be the last positional argument.

If defaults is a dictionary or an iterable then only the names provided by itering over defaults will be copied. If
defaults is a dictionary, and one of its key is not found in any of the sources, then the value of the key in the
dictionary is copied to target unless:

•It’s the value ~xoutil.symbols.Undefined.

•An exception object

•A sequence with is first value being a subclass of Exception. In which case adapt_exception is used.

In these cases a KeyError is raised if the key is not found in the sources.

If default is an iterable and a key is not found in any of the sources, None is copied to target.

If defaults is a callable then it should receive one positional arguments for the current attribute name and several
keyword arguments (we pass source) and return either True or False if the attribute should be copied.

If defaults is False (or None) only the attributes that do not start with a “_” are copied, if it’s True all attributes
are copied.

When target is not a mapping only valid Python identifiers will be copied.

Each source is considered a mapping if it’s an instance of collections.Mapping or a MappingProxyType.

The target is considered a mapping if it’s an instance of collections.MutableMapping.

Returns target.

Changed in version 1.7.0: defaults is now keyword only.

xoutil.objects.extract_attrs(obj, *names, default=Unset)
Extracts all names from an object.

If obj is a Mapping, the names will be search in the keys of the obj; otherwise the names are considered regular
attribute names.

If default is Unset and any name is not found, an AttributeError is raised, otherwise the default is used instead.

Returns a tuple if there are more that one name, otherwise returns a single value.

New in version 1.4.0.

Changed in version 1.5.3: Each name may be a path like in get_traverser(), but only ”.” is allowed as
separator.

xoutil.objects.traverse(obj, path, default=Unset, sep=’.’, getter=None)
Traverses an object’s hierarchy by performing an attribute get at each level.

This helps getting an attribute that is buried down several levels deep. For example:

86 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

traverse(request, 'session.somevalue')

If default is not provided (i.e is Unset) and any component in the path is not found an AttributeError exceptions
is raised.

You may provide sep to change the default separator.

You may provide a custom getter. By default, does an smart_getter() over the objects. If provided getter
should have the signature of getattr().

See get_traverser() if you need to apply the same path(s) to several objects. Actually this is equivalent
to:

get_traverser(path, default=default, sep=sep, getter=getter)(obj)

xoutil.objects.get_traverser(*paths, default=Unset, sep=’.’, getter=None)
Combines the power of traverse() with the expectations from both operator.itemgetter() and
operator.attrgetter().

Parameters paths – Several paths to extract.

Keyword arguments has the same meaning as in traverse().

Returns A function the when invoked with an object traverse the object finding each path.

New in version 1.5.3.

xoutil.objects.dict_merge(*dicts, **other)
Merges several dicts into a single one.

Merging is similar to updating a dict, but if values are non-scalars they are also merged is this way:

•Any two sequences or sets are joined together.

•Any two mappings are recursively merged.

•Other types are just replaced like in update().

If for a single key two values of incompatible types are found, raise a TypeError. If the values for a single key
are compatible but different (i.e a list an a tuple) the resultant type will be the type of the first apparition of the
key, unless for mappings which are always cast to dicts.

No matter the types of dicts the result is always a dict.

Without arguments, return the empty dict.

xoutil.objects.smart_getattr(name, *sources, **kwargs)
Gets an attr by name for the first source that has it.

This is roughly that same as:

get_first_of(sources, name, default=Unset, **kwargs)

Warning: Deprecated since 1.5.1

xoutil.objects.pop_first_of(source, *keys, default=None)
Similar to get_first_of() using as source either an object or a mapping and deleting the first attribute or
key.

Examples:

2.25. xoutil.objects - Functions for dealing with objects 87

https://docs.python.org/3.4/library/functions.html#getattr
https://docs.python.org/3.4/library/operator.html#operator.itemgetter
https://docs.python.org/3.4/library/operator.html#operator.attrgetter
https://docs.python.org/2.7/library/collections.html#collections.Set

xoutil Documentation, Release 1.8.0

>>> somedict = dict(bar='bar-dict', eggs='eggs-dict')

>>> class Foo(object): pass
>>> foo = Foo()
>>> foo.bar = 'bar-obj'
>>> foo.eggs = 'eggs-obj'

>>> pop_first_of((somedict, foo), 'eggs')
'eggs-dict'

>>> pop_first_of((somedict, foo), 'eggs')
'eggs-obj'

>>> pop_first_of((somedict, foo), 'eggs') is None
True

>>> pop_first_of((foo, somedict), 'bar')
'bar-obj'

>>> pop_first_of((foo, somedict), 'bar')
'bar-dict'

>>> pop_first_of((foo, somedict), 'bar') is None
True

xoutil.objects.get_and_del_attr(obj, name, default=None)
Deprecated alias for popattr().

xoutil.objects.get_and_del_first_of(source, *keys, default=None)
Deprecated alias for pop_first_of().

class xoutil.objects.metaclass(meta, **kwargs)
Deprecated alias of xoutil.eight.meta.metaclass.

New in version 1.4.1.

Changed in version 1.7.0: Deprecated in favor of xoutil.eight.meta.metaclass().

xoutil.objects.fix_method_documentation(cls, method_name, ignore=None, min_length=10,
deep=1, default=None)

Fix the documentation for the given class using its super-classes.

This function may be useful for shells or Python Command Line Interfaces (CLI).

If cls has an invalid documentation, super-classes are recursed in MRO until a documentation definition was
made at any level.

Parameters

• ignore – could be used to specify which classes to ignore by specifying its name in this
list.

• min_length – specify that documentations with less that a number of characters, also are
ignored.

xoutil.objects.multi_getter(source, *ids)
Get values from source of all given ids.

Parameters

• source – Any object but dealing with differences between mappings and other object
types.

88 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

• ids – Identifiers to get values from source.

An ID item could be:

– a string: is considered a key, if source is a mapping, or an attribute name if source is an
instance of any other type.

– a collection of strings: find the first valid value in source evaluating each item in this
collection using the above logic.

Example:

>>> d = {'x': 1, 'y': 2, 'z': 3}
>>> list(multi_getter(d, 'a', ('y', 'x'), ('x', 'y'), ('a', 'z', 'x')))
[None, 2, 1, 3]

>>> next(multi_getter(d, ('y', 'x'), ('x', 'y')), '---')
2

>>> next(multi_getter(d, 'a', ('b', 'c'), ('e', 'f')), '---') is None
True

New in version 1.7.1.

xoutil.objects.get_branch_subclasses(cls)
Similar to type.__subclasses__() but recursive.

Only return sub-classes in branches (those with no sub-classes). Instead of returning a list, yield each valid
value.

New in version 1.7.0.

xoutil.params – Tools for managing function arguments

Tools for managing function arguments.

New in version 1.7.1.

xoutil.params.MAX_ARG_COUNT = 1048576
The maximum number of positional arguments allowed when calling a function.

class xoutil.params.ParamManager(args, kwds)
Function parameters parser.

For example:

def wraps(*args, **kwargs):
pm = ParamManager(args, kwargs)
name = pm(0, 1, 'name', coerce=str)
wrapped = pm(0, 1, 'wrapped', coerce=valid(callable))
...

See ParamSchemeRow and ParamScheme classes to pre-define and validate schemes for extracting param-
eter values in a consistent way.

New in version 1.8.0.

remainder()
Return not consumed values in a mapping.

2.26. xoutil.params – Tools for managing function arguments 89

xoutil Documentation, Release 1.8.0

class xoutil.params.ParamScheme(*rows)
Full scheme for a ParamManager instance call.

This class receives a set of ParamSchemeRow instances and validate them as a whole.

New in version 1.8.0.

defaults
Return a mapping with all valid default values.

items()
Partial compatibility with mappings.

keys()
Partial compatibility with mappings.

class xoutil.params.ParamSchemeRow(*ids, **options)
Scheme row for a ParamManager instance call.

This class validates identifiers and options at this level; these checks are not done in a call to get a parameter
value.

Normally this class is used as part of a full ParamScheme composition.

Additionally to the options can be passed to ParamManager.__call__()‘, this class can be instanced
with:

•‘key’: an identifier to be used when the parameter is only positional or when none of the possible keyword
aliases must be used as the primary-key.

New in version 1.8.0.

default
Returned value if parameter value is absent.

If not defined, special value none is returned.

key
The primary key for this scheme-row definition.

This concept is a little tricky (the first string identifier if some is given, if not then the first integer).
This definition is useful, for example, to return remainder not consumed values after a scheme process is
completed (see ParamManager.remainder() for more information).

xoutil.params.check_count(args, low, high=1048576, caller=None)
Check the positional arguments actual count against constrains.

Parameters

• args – The args to check count, normally is a tuple, but an integer is directly accepted.

• low – Integer expressing the minimum count allowed.

• high – Integer expressing the maximum count allowed.

• caller – Name of the function issuing the check, its value is used only for error reporting.

New in version 1.8.0.

xoutil.params.check_default(absent=Undefined)
Get a default value passed as a last excess positional argument.

Parameters absent – The value to be used by default if no one is given. Defaults to Undefined.

For example:

90 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

def get(self, name, *default):
from xoutil.params import check_default, Undefined
if name in self.inner_data:

return self.inner_data[name]
elif check_default()(*default) is not Undefined:

return default[0]
else:

raise KeyError(name)

New in version 1.8.0.

xoutil.params.issue_9137(args)
Parse arguments for methods, fixing issue 9137 (self ambiguity).

There are methods that expect ‘self’ as valid keyword argument, this is not possible if this name is used explic-
itly:

def update(self, *args, **kwds):
...

To solve this, declare the arguments as method_name(*args, **kwds), and in the function code:

self, args = issue_9137(args)

Returns (self, remainder positional arguments in a tuple)

New in version 1.8.0.

xoutil.params.keywords_only(func)
Make a function to accepts its keywords arguments as keywords-only.

In Python 3 parlance this would make:

func(a, b=None)

become:

func(a, *, b=None).

In Python 3 this decorator does nothing. If func does not have any keyword arguments, return func.

There’s a pathological case when you define:

func(a, b=None, *args)

In such a case if you call func(1, 2, b=3) we can’t actually call the original function with a=1,
args=(2,) and b=3. This case also raises a TypeError.

New in version 1.8.0.

xoutil.params.pop_keyword_arg(kwargs, names, default=Undefined)
Return the value of a keyword argument.

Parameters

• kwargs – The mapping with passed keyword arguments.

• names – Could be a single name, or a collection of names.

• default – The default value to return if no value is found.

2.26. xoutil.params – Tools for managing function arguments 91

xoutil Documentation, Release 1.8.0

New in version 1.8.0.

xoutil.params.single(args, kwds)
Return a true value only when a unique argument is given.

Wnen needed, the most suitable result will be wrapped using the Maybe.

New in version 1.8.0.

Because the nature of this tool, the term “parameter” will be used in this documentation to reference those of the
represented client function, and the term “argument” for referencing those pertaining to ParamManager methods.

class xoutil.params.ParamManager(args, kwds)
Function parameters parser.

For example:

def wraps(*args, **kwargs):
pm = ParamManager(args, kwargs)
name = pm(0, 1, 'name', coerce=str)
wrapped = pm(0, 1, 'wrapped', coerce=valid(callable))
...

See ParamSchemeRow and ParamScheme classes to pre-define and validate schemes for extracting param-
eter values in a consistent way.

New in version 1.8.0.

When use this class as a callable, each identifier could be an integer or a string, respectively representing indexes
in the positional and names in the keyword parameters. Negative indexes are treated as in Python tuples or lists.

Several identifiers must be unambiguous, or because some integers are already marked as consumed in previous
calls or because an option coerce function validate only one position. In the case of names, when one value is
hit, all remainder names must be absent in the kwargs parameters.

‘coerce’ option could be a callable, or a Python type (or a tuple of types). When callable, must return a coerced
valid value or Invalid; when type or types, isinstance standard function is used to check.

__call__(*ids, **options)
Get a parameter value.

Parameters

• ids – parameter identifiers.

• options – keyword argument options.

Options could be:

•‘default’: value used if the parameter is absent;

•‘coerce’: check if a value is valid or not and convert to its definitive value; see xoutil.values
module for more information.

__init__(args, kwds)
Created with actual parameters of a client function.

remainder()
Return not consumed values in a mapping.

class xoutil.params.ParamScheme(*rows)
Full scheme for a ParamManager instance call.

This class receives a set of ParamSchemeRow instances and validate them as a whole.

New in version 1.8.0.

92 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

__call__(args, kwds, strict=False)
Get a mapping with all resulting values.

If special value ‘none’ is used as ‘default’ option in a scheme-row, corresponding value isn’t returned in
the mapping if the parameter value is missing.

__getitem__(idx)
Obtain the scheme-row by a given index.

__iter__()
Iterate over all defined scheme-rows.

__len__()
The defined scheme-rows number.

defaults
Return a mapping with all valid default values.

class xoutil.params.ParamSchemeRow(*ids, **options)
Scheme row for a ParamManager instance call.

This class validates identifiers and options at this level; these checks are not done in a call to get a parameter
value.

Normally this class is used as part of a full ParamScheme composition.

Additionally to the options can be passed to ParamManager.__call__()‘, this class can be instanced
with:

•‘key’: an identifier to be used when the parameter is only positional or when none of the possible keyword
aliases must be used as the primary-key.

New in version 1.8.0.

This class generates callable instances receiving one ParamManager instance as its single argument.

__call__(*args, **kwds)
Execute a scheme-row using as argument a ParamManager instance.

The concept of ParamManager instance argument is a little tricky: when a variable number of arguments
is used, if only one positional and is already an instance of ParamManager, it is directly used; if two, the
first is a tuple and the second is a dict, these are considered the constructor arguments of the new instance;
otherwise all arguments are used to build the new instance.

default
Returned value if parameter value is absent.

If not defined, special value none is returned.

key
The primary key for this scheme-row definition.

This concept is a little tricky (the first string identifier if some is given, if not then the first integer).
This definition is useful, for example, to return remainder not consumed values after a scheme process is
completed (see ParamManager.remainder() for more information).

xoutil.progress - Console progress utils

Tool to show a progress percent in the terminal.

2.27. xoutil.progress - Console progress utils 93

xoutil Documentation, Release 1.8.0

class xoutil.progress.Progress(max_value=100, delta=1, first_message=None, dis-
play_width=None)

Print a progress percent to the console. Also the elapsed and the estimated times.

To signal an increment in progress just call the instance and (optionally) pass a message like in:

progress = Progress(10)
for i in range(10):

progress()

xoutil.records - Records definitions

Records definitions.

A record allows to describe plain external data and a simplified model to read it. The main use of records is to represent
data that is read from a CSV file.

See the record class to find out how to use it.

class xoutil.records.record(raw_data)
Base record class.

Records allow to represent a sequence or mapping of values extracted from external sources into a dict-like
Python value.

The first use-case for this abstraction is importing data from a CSV file. You could represent each line as an
instance of a properly defined record.

An instance of a record would represent a single line (or row) from the external data source.

Records are expected to declare fields. Each field must be a CAPITALIZED valid identifier like:

>>> class INVOICE(record):
... ID = 0
... REFERENCE = 1

Fields must be integers or plain strings. Fields must not begin with an underscore (“_”). External data lines are
required to support indexes of those types.

You could use either the classmethod get_field() to get the value of field in a single line (data as provided
by the external source):

>>> line = (1, 'AA20X138874Z012')
>>> INVOICE.get_field(line, INVOICE.REFERENCE)
'AA20X138874Z012'

You may also have an instance:

>>> invoice = INVOICE(line)
>>> invoice.reference
'AA20X138874Z012'

Note: Instances attributes are renamed to lowercase. So you must not create any other attribute that has the
same name as a field in lowercase, or else it will be overwritten.

94 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

You could define readers for any field. For instance if you have a “CREATED_DATETIME” field you may
create a “_created_datetime_reader” function that will be used to parse the raw value of the instance into an
expected type. See the included readers builders below.

Readers are always cast as staticmethods, whether or not you have explicitly stated that fact:

>>> from dateutil import parser
>>> class BETTER_INVOICE(INVOICE):
... CREATED_TIME = 2
... _created_time_reader = lambda val: parser.parse(val)
...

>>> line = (1, 'AA20X138874Z012', '2014-02-17T17:29:21.965053')
>>> BETTER_INVOICE.get_field(line, BETTER_INVOICE.CREATED_TIME)
datetime.datetime(2014, 2, 17, 17, 29, 21, 965053)

Warning: Creating readers for fields defined in super classes is not directly supported. To do so, you must
declare the reader as a staticmethod yourself.

Note: Currently there’s no concept of relationship between rows in this model. We are evaluating whether
by placing a some sort of context into the kwargs argument would be possible to write readers that fetch other
instances.

Included reader builders

The following functions build readers for standards types.

Note: You cannot use these functions themselves as readers, but you must call them to obtain the desired reader.

All these functions have a pair of keywords arguments nullable and default. The argument nullable indicates whether
the value must be present or not. The function check_nullable() implements this check and allows other to
create their own builders with the same semantic.

xoutil.records.datetime_reader(format, nullable=False, default=None, strict=True)
Returns a datetime reader.

Parameters

• format – The format the datetime is expected to be in the external data. This is passed to
datetime.datetime.strptime().

• strict – Whether to be strict about datetime format.

The reader works first by passing the value to strict datetime.datetime.strptime() function. If that
fails with a ValueError and strict is True the reader fails entirely.

If strict is False, the worker applies different rules. First if the dateutil package is installed its parser module is
tried. If dateutil is not available and nullable is True, return None; if nullable is False and default is not null (as
in isnull()), return default, otherwise raise a ValueError.

xoutil.records.boolean_reader(true=(‘1’,), nullable=False, default=None)
Returns a boolean reader.

2.28. xoutil.records - Records definitions 95

xoutil Documentation, Release 1.8.0

Parameters true – A collection of raw values considered to be True. Only the values in this
collection will be considered True values.

xoutil.records.integer_reader(nullable=False, default=None)
Returns an integer reader.

xoutil.records.decimal_reader(nullable=False, default=None)
Returns a Decimal reader.

xoutil.records.float_reader(nullable=False, default=None)
Returns a float reader.

xoutil.records.date_reader(format, nullable=False, default=None, strict=True)
Return a date reader.

This is similar to datetime_reader() but instead of returning a datetime.datetime it returns a date-
time.date.

Actually this function delegates to datetime_reader() most of its functionality.

Checking for null values

xoutil.records.isnull(val)
Return True if val is null.

Null values are None, the empty string and any False instance of xoutil.symbols.boolean.

Notice that 0, the empty list and other false values in Python are not considered null. This allows that the CSV
null (the empty string) is correctly treated while other sources that provide numbers (and 0 is a valid number)
are not misinterpreted as null.

xoutil.records.check_nullable(val, nullable)
Check the restriction of nullable.

Return True if the val is non-null. If nullable is True and the val is null returns False. If nullable is False and val
is null, raise a ValueError.

Test for null is done with function isnull().

These couple of functions allows you to define new builders that use the same null concept. For instance, if you need
readers that parse dates in diferent locales you may do:

def date_reader(nullable=False, default=None, locale=None):
from xoutil.records import check_nullable
from babel.dates import parse_date, LC_TIME
from datetime import datetime
if not locale:

locale = LC_TIME

def reader(value):
if check_nullable(value, nullable):

return parse_date(value, locale=locale)
else:

return default
return reader

96 Chapter 2. Contents

https://docs.python.org/3.4/library/datetime.html#datetime.datetime

xoutil Documentation, Release 1.8.0

xoutil.string - Common string operations

Some additions for string standard module.

In this module str and unicode types are not used because Python 2 and Python 3 treats strings differently (see String
Ambiguity in Python for more information). The types bytes and text_type will be used instead with the following
conventions:

• In Python 2 str is synonym of bytes and both (unicode and ‘str’) are both string types inheriting form basestring.

• In Python 3 str is always unicode but unicode and basestring types doesn’t exists. bytes type can be used as an
array of one byte each item.

xoutil.string.cut_any_prefix(value, *prefixes)
Apply cut_prefix() for the first matching prefix.

xoutil.string.cut_any_suffix(value, *suffixes)
Apply cut_suffix() for the first matching suffix.

xoutil.string.cut_prefix(value, prefix)
Removes the leading prefix if exists, else return value unchanged.

xoutil.string.cut_prefixes(value, *prefixes)
Apply cut_prefix() for all provided prefixes in order.

xoutil.string.cut_suffix(value, suffix)
Removes the tailing suffix if exists, else return value unchanged.

xoutil.string.cut_suffixes(value, *suffixes)
Apply cut_suffix() for all provided suffixes in order.

xoutil.string.error2str(error)
Convert an error to string.

xoutil.string.make_a10z(string)
Utility to find out that “internationalization” is “i18n”.

Examples:

>>> print(make_a10z('parametrization'))
p13n

xoutil.string.normalize_slug(*args, **kw)
Return the normal-form of a given string value that is valid for slugs.

Convert all non-ascii to valid characters, whenever possible, using unicode ‘NFKC’ normalization and lower-
case the result. Replace unwanted characters by the value of replacement (remove extra when repeated).

Default valid characters are [_a-z0-9]. Extra arguments invalid_chars and valid_chars can modify this
standard behaviour, see next:

Parameters

• value – The source value to slugify.

• replacement – A character to be used as replacement for unwanted characters. Could
be both, the first extra positional argument, or as a keyword argument. Default value is a
hyphen (‘-‘).

There will be a contradiction if this argument contains any invalid character (see in-
valid_chars). None, or False, will be converted converted to an empty string for backward
compatibility with old versions of this function, but not use this, will be deprecated.

2.29. xoutil.string - Common string operations 97

xoutil Documentation, Release 1.8.0

• invalid_chars – Characters to be considered invalid. There is a default set of valid
characters which are kept in the resulting slug. Characters given in this parameter are re-
moved from the resulting valid character set (see valid_chars).

Extra argument values can be used for compatibility with invalid_underscore argument in
deprecated normalize_slug function:

– True is a synonymous of underscore "_".

– False or None: An empty set.

Could be given as a name argument or in the second extra positional argument. Default
value is an empty set.

• valid_chars – A collection of extra valid characters. Could be either a valid string, any
iterator of strings, or None to use only default valid characters. Non-ASCII characters are
ignored.

Examples:

>>> slugify(' Á.e i Ó u ') == 'a-e-i-o-u'
True

>>> slugify(' Á.e i Ó u ', '.', invalid_chars='AU') == 'e.i.o'
True

>>> slugify(' Á.e i Ó u ', valid_chars='.') == 'a.e-i-o-u'
True

>>> slugify('_x', '_') == '_x'
True

>>> slugify('-x', '_') == 'x'
True

>>> slugify(None) == 'none'
True

>>> slugify(1 == 1) == 'true'
True

>>> slugify(1.0) == '1-0'
True

>>> slugify(135) == '135'
True

>>> slugify(123456, '', invalid_chars='52') == '1346'
True

>>> slugify('_x', '_') == '_x'
True

Changed in version 1.5.5: Added the invalid_underscore parameter.

Changed in version 1.6.6: Replaced the invalid_underscore paremeter by invalids. Added the valids parameter.

Changed in version 1.7.2: Clarified the role of invalids with regards to replacement.

Changed in version 1.8.0: Deprecate the invalids paremeter name in favor of invalid_chars, also deprecate the
valids paremeter name in favor of valid_chars.

98 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

xoutil.string.slugify(value, *args, **kwds)
Return the normal-form of a given string value that is valid for slugs.

Convert all non-ascii to valid characters, whenever possible, using unicode ‘NFKC’ normalization and lower-
case the result. Replace unwanted characters by the value of replacement (remove extra when repeated).

Default valid characters are [_a-z0-9]. Extra arguments invalid_chars and valid_chars can modify this
standard behaviour, see next:

Parameters

• value – The source value to slugify.

• replacement – A character to be used as replacement for unwanted characters. Could
be both, the first extra positional argument, or as a keyword argument. Default value is a
hyphen (‘-‘).

There will be a contradiction if this argument contains any invalid character (see in-
valid_chars). None, or False, will be converted converted to an empty string for backward
compatibility with old versions of this function, but not use this, will be deprecated.

• invalid_chars – Characters to be considered invalid. There is a default set of valid
characters which are kept in the resulting slug. Characters given in this parameter are re-
moved from the resulting valid character set (see valid_chars).

Extra argument values can be used for compatibility with invalid_underscore argument in
deprecated normalize_slug function:

– True is a synonymous of underscore "_".

– False or None: An empty set.

Could be given as a name argument or in the second extra positional argument. Default
value is an empty set.

• valid_chars – A collection of extra valid characters. Could be either a valid string, any
iterator of strings, or None to use only default valid characters. Non-ASCII characters are
ignored.

Examples:

>>> slugify(' Á.e i Ó u ') == 'a-e-i-o-u'
True

>>> slugify(' Á.e i Ó u ', '.', invalid_chars='AU') == 'e.i.o'
True

>>> slugify(' Á.e i Ó u ', valid_chars='.') == 'a.e-i-o-u'
True

>>> slugify('_x', '_') == '_x'
True

>>> slugify('-x', '_') == 'x'
True

>>> slugify(None) == 'none'
True

>>> slugify(1 == 1) == 'true'
True

2.29. xoutil.string - Common string operations 99

xoutil Documentation, Release 1.8.0

>>> slugify(1.0) == '1-0'
True

>>> slugify(135) == '135'
True

>>> slugify(123456, '', invalid_chars='52') == '1346'
True

>>> slugify('_x', '_') == '_x'
True

Changed in version 1.5.5: Added the invalid_underscore parameter.

Changed in version 1.6.6: Replaced the invalid_underscore paremeter by invalids. Added the valids parameter.

Changed in version 1.7.2: Clarified the role of invalids with regards to replacement.

Changed in version 1.8.0: Deprecate the invalids paremeter name in favor of invalid_chars, also deprecate the
valids paremeter name in favor of valid_chars.

xoutil.symbols – Basic function argument manager

Special logical values like Unset, Undefined, Ignored, Invalid, ...

All values only could be True or False but are intended in places where None is expected to be a valid value or for
special Boolean formats.

xoutil.symbols.Ignored = Ignored
To be used in arguments that are currently ignored because they are being deprecated. The only valid reason to
use Ignored is to signal ignored arguments in method’s/function’s signature

xoutil.symbols.Invalid = Invalid
To be used in functions resulting in a fail where False could be a valid value.

class xoutil.symbols.MetaSymbol
Meta-class for symbol types.

nameof(s)
Get the name of a symbol instance (s).

parse(name)
Returns instance from a string.

Standard Python Boolean values are parsed too.

xoutil.symbols.This = This
To be used as a mark for current context as a mechanism of comfort.

xoutil.symbols.Undefined = Undefined
False value for local scope use or where Unset could be a valid value

xoutil.symbols.Unset = Unset
False value, mainly for function parameter definitions, where None could be a valid value.

class xoutil.symbols.boolean(*args, **kwds)
Instances are custom logical values (True or False).

See __getitem__() operator for information on constructor arguments.

For example:

100 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> true = boolean('true', True)
>>> false = boolean('false')
>>> none = boolean('false')
>>> unset = boolean('unset')

>>> class X(object):
... attr = None

>>> getattr(X(), 'attr') is not None
False

>>> getattr(X(), 'attr', false) is not false
True

>>> none is false
True

>>> false == False
True

>>> false == unset
True

>>> false is unset
False

>>> true == True
True

class xoutil.symbols.symbol(*args, **kwds)
Instances are custom symbols.

See __getitem__() operator for information on constructor arguments.

For example:

>>> ONE2MANY = symbol('ONE2MANY')
>>> ONE_TO_MANY = symbol('ONE2MANY')

>>> ONE_TO_MANY ONE2MANY
True

xoutil.validators – value validators

Some generic value validators and regular expressions and validation functions for several identifiers.

xoutil.validators.check(value, validator, msg=None)
Check a value with a validator.

Argument validator could be a callable, a type, or a tuple of types.

Return True if the value is valid.

Examples:

>>> check(1, int)
True

2.31. xoutil.validators – value validators 101

xoutil Documentation, Release 1.8.0

>>> check(10, lambda x: x <= 100, 'must be less than or equal to 100')
True

>>> check(11/2, (int, float))
True

xoutil.validators.check_no_extra_kwargs(kwargs)
Check that no extra keyword arguments are still not processed.

For example:

>>> from xoutil.validators import check_no_extra_kwargs
>>> def only_safe_arg(**kwargs):
... safe = kwargs.pop('safe', False)
... check_no_extra_kwargs(kwargs)
... print('OK for safe:', safe)

xoutil.validators.is_type(cls)
Return a validator with the same name as the type given as argument value.

Parameters cls – Class or type or tuple of several types.

xoutil.validators.ok(value, *checkers, **kwargs)
Validate a value with several checkers.

Return the value if it is Ok, or raises an ValueError exception if not.

Arguments:

Parameters

• value – the value to validate

• checkers – a variable number of checkers (at least one), each one could be a type, a tuple
of types of a callable that receives the value and returns if the value is valid or not. In order
the value is considered valid, all checkers must validate the value.

• message – keyword argument to be used in case of error; will be the argument of ValueEr-
ror exception; could contain the placeholders {value} and {type}; a default value is
used if this argument is not given.

• msg – an alias for “message”

• extra_checkers – In order to create validators using partial. Must be a tuple.

Keyword arguments are not validated to be correct.

This function could be used with type-definitions for arguments, see xoutil.fp.prove.semantic.
TypeCheck.

Examples:

>>> ok(1, int)
1

>>> ok(10, int, lambda x: x < 100, message='Must be integer under 100')
10

>>> ok(11/2, (int, float))
5.5

102 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> ok(11/2, int, float)
5.5

>>> try:
... res = ok(11/2, int)
... except ValueError:
... res = '---'
>>> res
'---'

xoutil.validators.predicate(*checkers, **kwargs)
Return a validation checker for types and simple conditions.

Parameters

• checkers – A variable number of checkers; each one could be:

– A type, or tuple of types, to test valid values with isinstance(value, checker)

– A set or mapping of valid values, the value is valid if contained in the checker.

– A tuple of other inner checkers, if any of the checkers validates a value, the value is valid
(OR).

– A list of other inner checkers, all checkers must validate the value (AND).

– A callable that receives the value and returns True if the value is valid.

– True and False could be used as checkers always validating or invalidating the value.

An empty list or no checker is synonym of True, an empty tuple, set or mapping is synonym
of False.

• name – Keyword argument to be used in case of error; will be the argument of ValueError
exception; could contain the placeholders {value} and {type}; a default value is used
if this argument is not given.

• force_name – Keyword argument to force a name if not given.

In order to obtain good documentations, use proper names for functions and lambda arguments.

With this function could be built real type checkers, for example:

>>> is_valid_age = predicate((int, float), lambda age: 0 < age <= 120)
>>> is_valid_age(100)
True

>>> is_valid_age(130)
False

>>> always_true = predicate(True)
>>> always_true(False)
True

>>> always_false = predicate(False)
>>> always_false(True)
False

>>> always_true = predicate()
>>> always_true(1)
True

2.31. xoutil.validators – value validators 103

xoutil Documentation, Release 1.8.0

>>> always_true('any string')
True

>>> always_false = predicate(())
>>> always_false(1)
False

>>> always_false('any string')
False

Contents:

xoutil.validators.identifiers – Simple identifiers validators

Regular expressions and validation functions for several identifiers.

xoutil.validators.identifiers.is_valid_identifier(name)
Returns True if name a valid Python identifier.

Note: Only Python 2’s version of valid identifier. This means that some Python 3 valid identifiers are not
considered valid. This helps to keep things working the same in Python 2 and 3.

xoutil.validators.identifiers.is_valid_full_identifier(name)
Returns True if name is a valid dotted Python identifier.

See is_valid_identifier() for what “validity” means.

xoutil.validators.identifiers.is_valid_public_identifier(name)
Returns True if name is a valid Python identifier that is deemed public.

Convention says that any name starting with a “_” is not public.

See is_valid_identifier() for what “validity” means.

xoutil.values – coercers (or checkers) for value types

Some generic coercers (or checkers) for value types.

This module coercion function are not related in any way to deprecated old python feature, are similar to a combination
of object mold/check:

• Mold - Fit values to expected conventions.

• Check - These functions must return nil1 special value to specify that expected fit is not possible.

A custom coercer could be created with closures, for an example see create_int_range_coerce().

This module uses Unset value to define absent -not being specified- arguments.

Also contains sub-modules to obtain, convert and check values of common types.

New in version 1.7.0.
1 We don’t use Python classic NotImplemented special value in order to obtain False if the value is not coerced (nil).

104 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

class xoutil.values.MetaCoercer
Meta-class for coercer.

This meta-class allows that several objects are considered valid instances of coercer:

•Functions decorated with coercer (used with its decorator facet).

•Instances of any sub-class of custom.

•Instances of coercer itself.

See the class declaration (coercer) for more information.

xoutil.values.callable_coerce(arg)
Check if arg is a callable object.

class xoutil.values.coercer
Special coercer class.

This class has several facets:

•Pure type-checkers when a type or tuple of types are received as argument. See istype for more infor-
mation.

•Return equivalent coercer from some special values:

–Any true value -> identity_coerce

–Any false or empty value -> void_coerce

•A decorator for functions; when a function is given, decorate it to become a coercer. The mark itself is not
enough, functions intended to be coercers must fulfills the protocol (not to produce exception and return
nil on fails). For example:

>>> @coercer
... def age_coerce(arg):
... res = int_coerce(arg)
... return res if t(res) and 0 < arg <= 120 else nil

TODO: Change next, don't use isinstance
>>> isinstance(age_coerce, coercer)
True

xoutil.values.coercer_name(arg, join=None)
Get the name of a coercer.

Parameters

• arg – Coercer to get the name. Also processes collections (tuple, list, or set) of coercers.
Any other value is considered invalid and raises an exception.

• join – When a collection is used; if this argument is None a collection of names is returned,
if not None then is used to join the items in a resulting string.

For example:

>>> coercer_name((int_coerce, float_coerce))
('int', 'float')

>>> coercer_name((int_coerce, float_coerce), join='-')
'int-float'

To obtain pretty-print tuples, use something like:

2.32. xoutil.values – coercers (or checkers) for value types 105

xoutil Documentation, Release 1.8.0

>>> coercer_name((int_coerce, float_coerce),
... join=lambda arg: '(%s)' % ', '.join(arg))

This function not only works with coercers, all objects that fulfill needed protocol to get names will also be
valid.

class xoutil.values.combo(*coercers)
Represent a zip composition of several inner coercers.

An instance of this class is constructed from a sequence of coercers and the its purpose is coerce a sequence of
values. Return a sequence2 where each item contains the i-th element from applying the i-th coercer to the i-th
value from argument sequence:

coercers -> (coercer-1, coercer-2, ...)
values -> (value-1, value-2, ...)
combo(coercers)(values) -> (coercer-1(value-1), coercer-2(value-2), ...)

If any value is coerced invalid, the function returns nil and the combo’s instance variable scope receives the
duple (failed-value, failed-coercer).

The returned sequence is truncated in length to the length of the shortest sequence (coercers or arguments).

If no coercer is given, all sequences are coerced as empty.

class xoutil.values.compose(*args, **kwargs)
Returns the composition of several inner coercers.

compose(f1, ... fn) is equivalent to f1(...(fn(arg))...)‘‘.

If no coercer is given return identity_coerce().

Could be considered an “AND” operator with some light differences because the nature of coercers: ordering
the coercers is important when some can modify (adapt) original values.

If no value results in coercers, a default coercer could be given as a keyword argument; identity_coerce is
assumed if missing.

xoutil.values.create_int_range_coerce(min, max)
Create a coercer to check integers between a range.

xoutil.values.create_unique_member_coerce(coerce, container)
Useful to wrap member coercers when coercing containers.

See iterable and mapping.

Resulting coercer check that a member must be unique (not repeated) after it’s coerced.

For example:

>>> from xoutil.values import (mapping, create_unique_member_coerce,
... int_coerce, float_coerce)

>>> sample = {'1': 1, 2.0: '3', 1.0 + 0j: '4.1'}

>>> dc = mapping(int_coerce, float_coerce)
>>> dc(dict(sample))
{1: 1.0, 2: 3.0}

>>> dc = mapping(create_unique_member_coerce(int_coerce), float_coerce)
>>> dc(dict(sample))
nil

2 The returned sequence is of the same type as the argument sequence if possible.

106 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

class xoutil.values.custom(*args, **kwargs)
Base class for any custom coercer.

The field inner stores an internal data used for the custom coercer; could be a callable, an inner coercer, or a
tuple of inner checkers if more than one is needed, ...

The field scope stores the exit (not regular) condition: the value that fails or -if needed- a tuple with (exit-value,
exit-coercer) or (error-value, error). The exit condition is not always a failure, for example in some it is the
one that is valid among other inner coercers. To understand better this think on (AND, OR) operators a chain of
ANDs exits with the first failure and a chains of ORs exits with the first success.

All custom coercers are callable (must redefine __call__()) receiving one argument that must be coerced.
For example:

>>> def foobar(*args):
... coerce = pargs(int_coerce)
... return coerce(args)

This class has two protected fields (_str_join and _repr_join) that are used to call coercer_name() in
__str__() and __repr__() special methods.

classmethod flatten(obj, avoid=Unset)
Flatten a coercer set.

Parameters obj – Could be a coercer representing other inner coercers, or a tuple or list con-
taining coercers.

xoutil.values.file_coerce(arg)
Check if arg is a file-like object.

xoutil.values.float_coerce(arg)
Check if arg is a valid float.

Other types are checked (string, int, complex).

xoutil.values.full_identifier_coerce(arg)
Check if arg is a valid dotted Python identifier.

See identifier_coerce() for what “validity” means.

xoutil.values.identifier_coerce(arg)
Check if arg is a valid Python identifier.

Note: Only Python 2’s version of valid identifier. This means that some Python 3 valid identifiers are not
considered valid. This helps to keep things working the same in Python 2 and 3.

xoutil.values.identity_coerce(arg)
Leaves unchanged the passed argument arg.

xoutil.values.int_coerce(arg)
Check if arg is a valid integer.

Other types are checked (string, float, complex).

class xoutil.values.istype(*args, **kwargs)
Pure type-checker.

It’s constructed from an argument valid for types_tuple_coerce() coercer.

For example:

2.32. xoutil.values – coercers (or checkers) for value types 107

xoutil Documentation, Release 1.8.0

>>> int_coerce = istype(int)

>>> int_coerce(1)
1

>>> int_coerce('1')
nil

>>> number_coerce = istype((int, float, complex))

>>> number_coerce(1.25)
1.25

>>> number_coerce('1.25')
nil

class xoutil.values.iterable(member_coerce, outer_coerce=True)
Create a inner coercer that coerces an iterable member a member.

See constructor for more information.

Return a list, or the same type of source iterable argument if possible.

For example:

>>> from xoutil.values import (iterable, int_coerce,
... create_unique_member_coerce)

>>> sample = {'1', 1, '1.0'}

>>> sc = iterable(int_coerce)
>>> sc(set(sample)) == {1}
True

See mapping for more details of this problem. The equivalent safe example is:

>>> member_coerce = create_unique_member_coerce(int_coerce, sample)
>>> sc = iterable(member_coerce)
>>> sc(set(sample))
nil

when executed coerces arg (an iterable) member a member using member_coercer. If any member coercion
fails, the full execution also fails.

There are three types of results when an instance is executed: (1) iterables that are coerced without modifications,
(2) the modified ones but conserving its type, and (3) those that are returned in a list.

class xoutil.values.logical(*args, **kwds)
Represent Common Lisp two special values t and nil.

Include redefinition of __call__() to check values with special semantic:

•When called as t(arg), check if arg is not nil returning a logical true: the same argument if arg is nil or
a true boolean value, else return t. That means that False or 0 are valid true values for Common Lisp but
not for Python.

•When called as nil(arg), check if arg is nil returning t or nil if not.

Constructor could receive a valid name (‘nil’ or ‘t’) or any other boolean instance.

108 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

class xoutil.values.mapping(*args, **kwargs)
Create a coercer to check dictionaries.

Receives two coercers, one for keys and one for values.

For example:

>>> from xoutil.values import (mapping, int_coerce, float_coerce,
... create_unique_member_coerce)

>>> sample = {'1': 1, 2.0: '3', 1.0 + 0j: '4.1'}

>>> dc = mapping(int_coerce, float_coerce)
>>> dc(dict(sample)) == {1: 1.0, 2: 3.0}
True

When coercing containers it’s probable that members become repeated after coercing them. This could be not
desirable (mainly in sets and dictionaries). In those cases use create_unique_member_coerce() to
wrap member coercer. For example:

>>> key_coerce = create_unique_member_coerce(int_coerce, sample)
>>> dc = mapping(key_coerce, float_coerce)
>>> dc(dict(sample))
nil

Above problem is because it’s the same integer (same hash) coerced versions of '1' and 1.0+0j.

This problem of objects of different types that have the same hash is a problem to use a example as below:

>>> {1: int, 1.0: float, 1+0j: complex} == {1: complex}
True

xoutil.values.names_coerce(arg)
Check arg as a tuple of valid object names (identifiers).

If only one string is given, is returned as the only member of the resulting tuple.

xoutil.values.number_coerce(arg)
Check if arg is a valid number (integer or float).

Types that are checked (string, int, float, complex).

class xoutil.values.pargs(arg_coerce)
Create a inner coercer that check variable argument passing.

Created coercer closure must always receives an argument that is an valid iterable with all members coerced
properly with the argument of this outer creator function.

If the inner closure argument has only a member and this one is not properly coerced but it’s an iterabled with
all members that coerced well, this member will be the assumed iterable instead the original argument.

In the following example:

>>> from xoutil.values import (iterable, int_coerce)

>>> def foobar(*args):
... coerce = iterable(int_coerce)
... return coerce(args)

>>> args = (1, 2.0, '3.0')
>>> foobar(*args)

2.32. xoutil.values – coercers (or checkers) for value types 109

xoutil Documentation, Release 1.8.0

(1, 2, 3)

>>> foobar(args)
nil

An example using pargs

>>> from xoutil.values import (pargs, int_coerce)

>>> def foobar(*args):
... # Below, "coercer" receives the returned "inner"
... coerce = pargs(int_coerce)
... return coerce(args)

>>> args = (1, 2.0, '3.0')
>>> foobar(*args)
(1, 2, 3)

>>> foobar(args)
(1, 2, 3)

The second form is an example of the real utility of this coercer closure: if by error a sequence is passed as it to
a function that expect a variable number of argument, this coercer fixes it.

Instance variable scope stores the last processed invalid argument.

When executed, usually arg is a tuple received by a function as *args form.

When executed, returns a tuple, or the same type of source iterable argument if possible.

See xoutil.params for a more specialized and full function arguments conformer.

See combo for a combined coercer that validate each member with a separate member coercer.

xoutil.values.positive_int_coerce(arg)
Check if arg is a valid positive integer.

class xoutil.values.safe(func)
Uses a function (or callable) in a safe way.

Receives a coercer that expects only one argument and returns another value.

If the returned value is a boolean (maybe the coercer is a predicate), it’s converted to a logical instance.

The wrapped coercer is called in a safe way (inside try/except); if an exception is raised the coercer returns nil
and the error is saved in the instance attribute scope.

xoutil.values.sized_coerce(arg)
Return a valid sized iterable from arg.

If arg is iterable but not sized, is converted to a list. For example:

>>> sized_coerce(i for i in range(1, 10, 2))
[1, 3, 5, 7, 9]

>>> s = {1, 2, 3}
>>> sized_coerce(s) is s
True

class xoutil.values.some(*args, **kwargs)
Represent OR composition of several inner coercers.

110 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

compose(f1, ... fn) is equivalent to f1(arg) or f2(arg) ... fn(arg)‘‘ in the sense “the first not nil”.

If no coercer is given return void_coerce().

xoutil.values.type_coerce(arg)
Check if arg is a valid type.

class xoutil.values.typecast(*args, **kwargs)
A type-caster.

It’s constructed from an argument valid for types_tuple_coerce() coercer. Similar to istype but try
to convert the value if needed.

For example:

>>> int_cast = typecast(int)

>>> int_cast('1')
1

>>> int_cast('1x')
nil

xoutil.values.types_tuple_coerce(arg)
Check if arg is valid for isinstance or issubclass 2nd argument.

Type checkers are any class, a type or tuple of types. For example:

>>> types_tuple_coerce(object) == (object,)
True

>>> types_tuple_coerce((int, float)) == (int, float)
true

>>> types_tuple_coerce('not-a-type') is nil
True

See type_coerce for more information.

xoutil.values.void_coerce(arg)
Always nil.

Contents:

xoutil.values.ids – unique identifiers at different contexts

Utilities to obtain identifiers that are unique at different contexts.

Contexts could be global, host local or application local. All standard uuid tools are included in this one: UUID,
uuid1(), uuid3(), uuid4(), uuid5(), getnode() and standard UUIDs constants NAMESPACE_DNS,
NAMESPACE_URL, NAMESPACE_OID and NAMESPACE_X500.

This module also contains:

• str_uuid(): Return a string with a GUID representation, random if the argument is True, or a host ID if not.

New in version 1.7.0.

xoutil.values.ids.str_uuid(random=False)
Return a “Global Unique ID” as a string.

Parameters random – If True, a random uuid is generated (does not use host id).

2.32. xoutil.values – coercers (or checkers) for value types 111

https://docs.python.org/3.4/library/uuid.html#module-uuid

xoutil Documentation, Release 1.8.0

xoutil.values.simple – Simple or internal coercers

Simple or internal coercers.

With coercers defined in this module, many of the xoutil.string utilities could be deprecated.

In Python 3, all arrays, not only those containing valid byte or unicode chars, are buffers.

xoutil.values.simple.ascii_coerce(arg)
Coerce to string containing only ASCII characters.

Convert all non-ascii to valid characters using unicode ‘NFKC’ normalization.

xoutil.values.simple.ascii_set_coerce(arg)
Coerce to string with only ASCII characters removing repetitions.

Convert all non-ascii to valid characters using unicode ‘NFKC’ normalization.

xoutil.values.simple.bytes_coerce(arg)
Encode an unicode string (or any object) returning a bytes buffer.

Uses the defined encoding system value.

In Python 2.x bytes coincide with str type, in Python 3 str uses unicode and str is different to bytes.

There are differences if you want to obtain a buffer in Python 2.x and Python 3; for example, the following code
obtain different results:

>>> ba = bytes([65, 66, 67])

In Python 2.x is obtained the string "[65, 66, 67]" and in Python 3 b"ABC". This function normalize
these differences.

Name is used in named objects, see name_coerce() for more information.

See str_coerce() to coerce to standard string type, bytes in Python 2.x and unicode (str) in Python 3.

Always returns the bytes type.

New in version 1.7.0.

xoutil.values.simple.chars_coerce(arg)
Convert to unicode characters.

If arg is an integer between 0 and 0x10ffff is converted assuming it as ordinal unicode code, else is converted
with unicode_coerce().

xoutil.values.simple.collection(arg=nil, avoid=(), force=False, base=None, name=None)
Coercer for logic collections.

Inner coercer returns the same argument if it is a strict iterable. In Python, strings are normally iterables, but
never in our logic. So:

>>> collection('abc') is nil
True

This function could directly check an argument if it isn’t nil, or returns a coercer using extra parameters:

Parameters

• avoid – a type or tuple of extra types to ignore as valid collections; for example:

112 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

>>> collection(avoid=dict)({}) is nil
True
>>> collection()({}) is nil
False

• force – if main argument is not a valid collection, it is are wrapped inner a list:

>>> collection(avoid=(dict,), force=True)({}) == [{}]
True

• base – if not None, must be the base to check instead of Iterable.

• name – decorate inner coercer with that function name.

xoutil.values.simple.decode_coerce(arg)
Decode objects implementing the buffer protocol.

xoutil.values.simple.encode_coerce(arg)
Encode string objects.

xoutil.values.simple.force_collection_coerce(arg)
Return the same argument if it is a strict iterable. Strings and (<class ‘_abcoll.Mapping’>,) are not considered
valid iterables in this case. A non iterable argument is wrapped in a list.

xoutil.values.simple.force_iterable_coerce(arg)
Return the same argument if it is a strict iterable. Strings are not considered valid iterables in this case. A non
iterable argument is wrapped in a list.

xoutil.values.simple.force_sequence_coerce(arg)
Return the same argument if it is a strict iterable. Strings and (<class ‘_abcoll.Mapping’>,) are not considered
valid iterables in this case. A non iterable argument is wrapped in a list.

xoutil.values.simple.isnot(value)
Create a coercer that returns arg if arg is not value.

xoutil.values.simple.iterable_coerce(arg)
Return the same argument if it is an iterable.

xoutil.values.simple.logic_collection_coerce(arg)
Return the same argument if it is a strict iterable. Strings and (<class ‘_abcoll.Mapping’>,) are not considered
valid iterables in this case.

xoutil.values.simple.logic_iterable_coerce(arg)
Return the same argument if it is a strict iterable. Strings are not considered valid iterables in this case.

xoutil.values.simple.logic_sequence_coerce(arg)
Return the same argument if it is a strict iterable. Strings and (<class ‘_abcoll.Mapping’>,) are not considered
valid iterables in this case.

xoutil.values.simple.lower_ascii_coerce(arg)
Coerce to string containing only lower-case ASCII characters.

Convert all non-ascii to valid characters using unicode ‘NFKC’ normalization.

xoutil.values.simple.lower_ascii_set_coerce(arg)
Coerce to string with only lower-case ASCII chars removing repetitions.

Convert all non-ascii to valid characters using unicode ‘NFKC’ normalization.

xoutil.values.simple.name_coerce(arg)
If arg is a named object, return its name, else nil.

Object names are always of str type, other types are considered invalid.

2.32. xoutil.values – coercers (or checkers) for value types 113

https://docs.python.org/2.7/library/collections.html#collections.Iterable

xoutil Documentation, Release 1.8.0

Generator objects has the special __name__ attribute, but they are ignored and considered invalid.

xoutil.values.simple.not_false(default)
Create a coercer that returns default if arg is considered false.

See not_false_coercer() for more information on values considered false.

xoutil.values.simple.not_false_coercer(arg)
Validate that arg is not a false value.

Python convention for values considered True or False is not used here, our false values are only None or any
false instance of xoutil.symbols.boolean (of course including False itself).

xoutil.values.simple.str_coerce(arg)
Coerce to standard string type.

bytes in Python 2.x and unicode (str) in Python 3.

New in version 1.7.0.

xoutil.values.simple.strict_string_coerce(arg)
Coerce to string only if argument is a valid string type.

class xoutil.values.simple.text
Return a nice text representation of one object.

text(obj=’‘) -> text

text(bytes_or_buffer[, encoding[, errors]]) -> text

Create a new string object from the given object. If encoding or errors is specified, then the object must expose
a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of
object text representation.

Parameters

• encoding – defaults to sys.getdefaultencoding().

• errors – defaults to ‘strict’.

Method join is improved, in order to receive any collection of objects, as variable number of arguments or as
one iterable.

chr_join(variable_number_args or iterable)→ text
Return a text which is the concatenation of the objects (converted to text) in argument items. The separator
between elements is S.

Difference with join() is that integers between 0 and 0x10ffff are converted to characters as unicode
ordinal.

join(variable_number_args or iterable)→ text
Return a text which is the concatenation of the objects (converted to text) in argument items. The separator
between elements is S.

See chr_join() for other vertion of this functionality.

xoutil.values.simple.unicode_coerce(arg)
Decode a buffer or any object returning unicode text.

Uses the defined encoding system value.

In Python 2.x unicode has a special type different to str but in Python 3 coincide with str type.

Name is used in named objects, see name_coerce() for more information.

See str_coerce() to coerce to standard string type, bytes in Python 2.x and unicode (str) in Python 3.

114 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

New in version 1.7.0.

xoutil.web – Utils for Web applications

Utils for Web applications.

xoutil.web.slugify(s, entities=True, decimal=True, hexadecimal=True)
Convert a string to a slug representation.

Normalizes string, converts to lower-case, removes non-alpha characters, and converts spaces to hyphens.

Parts from http://www.djangosnippets.org/snippets/369/

>>> slugify("Manuel Vázquez Acosta")
'manuel-vazquez-acosta'

If s and entities is True (the default) all HTML entities are replaced by its equivalent character before normal-
ization:

>>> slugify("Manuel Vázquez Acosta")
'manuel-vazquez-acosta'

If entities is False, then no HTML-entities substitution is made:

>>> value = "Manuel Vázquez Acosta"
>>> slugify(value, entities=False)
'manuel-v-aacute-zquez-acosta'

If decimal is True, then all entities of the form &#nnnn where nnnn is a decimal number deemed as a unicode
codepoint, are replaced by the corresponding unicode character:

>>> slugify('Manuel Vázquez Acosta')
'manuel-vazquez-acosta'

>>> value = 'Manuel Vázquez Acosta'
>>> slugify(value, decimal=False)
'manuel-v-225-zquez-acosta'

If hexadecimal is True, then all entities of the form &#nnnn where nnnn is a hexdecimal number deemed as a
unicode codepoint, are replaced by the corresponding unicode character:

>>> slugify('Manuel Vázquez Acosta')
'manuel-vazquez-acosta'

>>> slugify('Manuel Vázquez Acosta', hexadecimal=False)
'manuel-v-x00e1-zquez-acosta'

String Ambiguity in Python

In Python there are three semantic types when handling character strings:

1. Text: by nature can be part of internationalization processes. See Unicode for a standard for the representation,
and handling of text in most of the world’s writing systems.

2.33. xoutil.web – Utils for Web applications 115

http://www.djangosnippets.org/snippets/369/
https://en.wikipedia.org/wiki/Unicode

xoutil Documentation, Release 1.8.0

In Python 2 there is an special type unicode to process text, but sometimes str is also used encoding the
content; but in Python 3 str is always represented as Unicode.

2. Technical Strings: those used for for some special object names (classes, functions, modules, ...); the __all__
definition in modules, identifiers, etc. Those values most times requires necessarily to be instances of str type.
Try next in Python 2:

>>> class Foobar(object):
... pass
>>> Foobar.__name__ = u'foobar'
TypeError: can only assign string to xxx.__name__, not 'unicode'

In Python 2 str and bytes are synonymous; but in Python 3 are different types and bytes is exclusively
used for binary strings.

3. Binary Strings: binary data (normally not readable by humans) represented as a character string. In Python 3
the main built-in type for this concept is bytes.

Mismatch Semantics Comparison

In Python 2 series, equal comparison for unicode an str types don’t ever match. The following example fails in that
version:

>>> s = '𝜆'
>>> u = u'𝜆'
>>> u == s
False

Also a UnicodeWarning is issued with message “Unicode equal comparison failed to convert both arguments to
Unicode - interpreting them as being unequal.

To correctly compare, use the same type. For example:

>>> from xoutil.eight.text import force
>>> force(s) == force(u)
True

Compatibility Modules

Xoutil has a Python 2 and 3 compatibility package named eight. So these issues related to ambiguity when handling
strings (see Text versus binary data) are dealt in the sub-modules:

• text: tools related with text handling. In Python 2 values are processed with unicode and in Python 3 with
standard str type.

• string: tools that in both versions of Python always use standard str type to fulfills technical strings seman-
tics.

These modules can be used transparently in both Python versions.

Encoding Hell

To represent a entire range of characters is used some kind of encoding system. Maybe the trending top is the UTF
(Unicode Transformation Format) family.

116 Chapter 2. Contents

https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bytes
https://docs.python.org/3/howto/pyporting.html#text-versus-binary-data
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Character_encoding

xoutil Documentation, Release 1.8.0

This complex diversity, even when strictly necessary for most applications, represents an actual “hell” for program-
mers.

For more references see codecs standard module. Also the xoutil.future.codecs, and xoutil.eight.
text extension modules.

Changelog

1.8 series

Unreleased. Release 1.8.0

• Remove deprecated xoutil.objects.metaclass, use xoutil.eight.meta.metaclass() in-
stead.

• Several modules are migrated to xoutil.future:

– types.

– collections.

– datetime.

– functools.

– inspect.

– codecs.

– json.

– threading.

– subprocess.

– pprint.

– textwrap.

• Add function xoutil.deprecation.import_deprecated(), inject_deprecated() can be
deprecated now.

• Add function xoutil.deprecation.deprecate_linked() to deprecate full modules imported from
a linked version. The main example are all sub-modules of xoutil.future.

• Add function xoutil.deprecation.deprecate_module() to deprecate full modules when imported.

• Remove the module xoutil.string in favor of:

– xoutil.future.codecs: Moved here functions force_encoding(), safe_decode(), and
safe_encode().

– xoutil.eight.string: Technical string handling. In this module:

* force(): Replaces old safe_str, and force_str versions.

* safe_join(): Replaces old version in future module. This function is useless, it’s equivalent
to:

force(vale).join(force(item) for item in iterator)

* force_ascii(): Replaces old normalize_ascii. This function is safe and the result will be
of standard str type containing only equivalent ASCII characters from the argument.

2.35. Changelog 117

https://docs.python.org/3.4/library/codecs.html#module-codecs

xoutil Documentation, Release 1.8.0

– xoutil.eight.text: Text handling, strings can be part of internationalization processes. In this
module:

* force(): Replaces old safe_str, and force_str versions, but always returning the text type.

* safe_join(): Replaces old version in future module, but in this case always return the text
type. This function is useless, it’s equivalent to:

force(vale).join(force(item) for item in iterator)

– capitalize_word function was completely removed, use instead standard method word.
capitalize().

– Functions capitalize, normalize_name, normalize_title, normalize_str,
parse_boolean, parse_url_int were completely removed.

– normalize_unicode was completely removed, it’s now replaced by xoutil.eight.text.
force().

– hyphen_name was moved to xoutil.cli.tools.

– strfnumber was moved as an internal function of ‘xoutil.future.datetime’:mod: module.

– Function normalize_slug is now deprecated. You should use now slugify().

• Create __small__ protocol for small string representations, see xoutil.string.small() for more in-
formation.

• Remove xoutil.connote that was introduced provisionally in 1.7.1.

• Module xoutil.params was introduced provisionally in 1.7.1, but now has been fully recovered.

– Add function issue_9137() – Helper to fix issue 9137 (self ambiguity).

– Add function check_count() – Checker for positional arguments actual count against constrains.

– Add function check_default() – Default value getter when passed as a last excess positional argu-
ment.

– Add function single() – Return true only when a unique argument is given.

– Add function keywords_only() – Decorator to make a function to accepts its keywords arguments as
keywords-only.

– Add function pop_keyword_arg() – Tool to get a value from keyword arguments using several pos-
sible names.

– Add class ParamManager – Parameter manager in a “smart” way.

– Add class ParamScheme – Parameter scheme definition for a manager.

– Add class ParamSchemeRow – Parameter scheme complement.

– Remove xoutil.params.ParamConformer.

• Module xoutil.values was recovered adding several new features (old name xoutil.cl was depre-
cated).

• Add experimental module xoutil.fp for Functional Programming stuffs.

• Add experimental module xoutil.tasking.

• Remove deprecated module xoutil.data. Add xoutil.objects.adapt_exception().

• Remove deprecated xoutil.dim.meta.Signature.isunit().

118 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

1.7 series

2017-10-17 - 1.7.12

• xoutil.datetime.EmptyTimeSpan is now pickable.

2017-10-05. 1.7.11

Nothing yet

2017-09-21. 1.7.10

• Fix bug #6: TimeSpan.overlaps was incorrectly defined.

• Fix bug #5: TimeSpan can’t have a union method.

2017-09-20. 1.7.9

• Deprecate xoutil.dim.meta.Signature.isunit().

• Rename xoutil.dim.meta.QuantityType to xoutil.dim.meta.Dimension.

• Fix bug in xoutil.datetime.TimeSpan. start_date and end_date now return an instance of
Python’s datetime.date instead of a sub-class.

2017-09-19. 1.7.8

• Added module xoutil.dim – Facilities to work with concrete numbers.

2017-09-07. 1.7.7

• Fixed bug in xoutil.datetime.date that prevented to use strftime() in subclasses.

• Fixed bug in xoutil.datetime.TimeSpan.valid().

2017-09-05. Release 1.7.6

• Fix a bug in xoutil.datetime.TimeSpan for Python 2. Representing a time span might fail with a
‘Maximum Recursion Detected’ error.

2017-09-05. Release 1.7.5

• Added xoutil.datetime.TimeSpan.

• Added the module xoutil.infinity .

• Added the keyword argument on_error to xoutil.bound.until_errors().

2.35. Changelog 119

https://gitlab.lahavane.com/merchise/xoutil/issues/6
https://gitlab.lahavane.com/merchise/xoutil/issues/5
https://github.com/merchise/xoutil/commit/9948d480da994212182ff7c4c865e8588e394952
https://docs.python.org/3.4/library/datetime.html#datetime.date

xoutil Documentation, Release 1.8.0

2017-04-06. Release 1.7.4

• Added the argument key to xoutil.iterators.delete_duplicates().

• Added the function xoutil.iterators.iter_delete_duplicates().

2017-02-23. Release 1.7.3

• Add xoutil.iterators.ungroup().

• Add xoutil.future.datetime.get_next_month().

2017-02-07. Release 1.7.2

• Add xoutil.bound.until() and xoutil.bound.until_errors().

• Fix issue that made xoutil.uuid unusable. Introduced in version 1.7.1, commit 58eb359.

• Remove support for Python 3.1 and Python 3.2.

2015-12-17. Release 1.7.1

• Add xoutil.collections.PascalSet and xoutil.collections.BitPascalSet.

• Add xoutil.functools.lwraps().

• Add xoutil.objects.multi_getter(), xoutil.objects.get_branch_subclasses(),
xoutil.objects.fix_method_documentation().

• Add xoutil.string.safe_str()

• Remove long deprecated modules: xoutil.aop and xoutil.proxy.

• Deprecate xoutil.html entirely.

• The following modules are included on a provisional basis. Backwards incompatible changes (up to and includ-
ing removal of the module) may occur if deemed necessary by the core developers:

– xoutil.connote.

– xoutil.params.

Fixes in 1.7.1.post1:

• Fix issue with both xoutil.string.safe_decode() and xoutil.string.safe_encode().

Previously, the parameter encoding could contain an invalid encoding name and the function could fail.

Fixes in 1.7.1.post2:

• Fix xoutil.string.cut_suffix(). The following invariant was being violated:

>>> cut_suffix(v, '') == v # for any value of 'v'

Warning: Due to lack of time, we have decided to release this version without proper releases of 1.7.0 and 1.6.11.

120 Chapter 2. Contents

https://github.com/merchise-autrement/xoutil/commit/58eb35950cc33a9ecaa6565895e1b2147cace9f9_

xoutil Documentation, Release 1.8.0

Unreleased. Release 1.7.0

This release was mainly focused in providing a new starting point for several other changes. This release is being
synchronized with the last release of the 1.6.11 to allow deprecation messages to be included properly.

The following is the list of changes:

• The defaults xoutil.objects.smart_copy() has being made keyword only.

• Deprecates the pop() semantics, they shadow the dict.pop(). A new pop_level() is provided to
explicitly pop a stack level. The same is done for the pop() method.

• Deprecates xoutil.iterators.fake_dict_iteritems().

• Deprecates xoutil.objects.metaclass in favor for xoutil.eight.meta.metaclass().

1.6 series

Unreleased. Release 1.6.11

This is the last release of the 1.6 series. It’s being synchronized with release 1.7.0 to deprecate here what’s being
changed there.

• The defaults argument of xoutil.objects.smart_copy() is marked to be keyword-only in version
1.7.0.

• Fixes a bug in xoutil.objects.smart_copy(). If defaults was None is was not being treated the same
as being False, as documented. This bug was also fixed in version 1.7.0.

• xoutil.objects.metaclass() will be moved to xoutil.eight.meta in version 1.7.0 and deprecated, it
will be removed from xoutil.object in version 1.7.1.

• This release will be the last to support Python 3.1, 3.2 and 3.3. Support will be kept for Python 2.7 and Python
3.4.

2015-04-15. Release 1.6.10

• Fix repr() and str() issues with xoutil.cli.Command instances.

2015-04-03. Release 1.6.9

• The defaults argument in xoutil.objects.smart_copy() is now keyword-only.

• xoutil.context is now greenlet-safe without depending of gevent.

2015-01-26. Release 1.6.8

• Added xoutil.records.date_reader().

• Added a forward-compatible xoutil.inspect.getfullargspec().

• Now contexts will support gevent-locals if available. See the note in the module documentation.

• Minor fixes.

2.35. Changelog 121

https://docs.python.org/3.4/library/functions.html#repr

xoutil Documentation, Release 1.8.0

2014-12-17. Release 1.6.7

• Added the strict argument to xoutil.records.datetime_reader().

• You may now install xoutil[extra] so that not required but useful packages are installed when xoutil is
installed.

For now this only includes python-dateutil that allows the change in datetime_reader().

2014-11-26. Release 1.6.6

• Improved the xoutil.string.normalize_slug() by providing both valid and invalid chars.

• Added the xoutil.string.normalize_ascii().

2014-10-13. Release 1.6.5

• Added the module xoutil.records.

• Deleted deprecated xoutil.compat.

• Deprecate the xoutil.six. It will removed in 1.7.0 (probably next release).

Now xoutil requires six 1.8.0.

2014-09-13. Release 1.6.4

• Fix bug in xoutil.fs.concatfiles(): There were leaked opened files.

2014-08-05. Release 1.6.3

• Added the pre-release version of xoutil.bound module.

2014-08-04. Release 1.6.2

• Fix encoding issues in xoutil.string.cut_prefix() and xoutil.string.cut_suffix().

Previously this code failed:

>>> from xoutil.string import cut_prefix
>>> cut_prefix(u'-\xe1', '-')
Traceback ...
...

UnicodeEncodeError: 'ascii' ...

Now both functions force its second argument to be of the same type of the first. See xoutil.string.
safe_decode() and xoutil.string.safe_encode().

2014-07-18. Release 1.6.1

• Added the yield parameter in xoutil.fs.ensure_filename().

• Added the base parameter in xoutil.modules.moduleproperty().

• Added the function xoutil.fs.concatfiles().

122 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

2014-06-02. Release 1.6.0

• Changes the signature of xoutil.names.nameof(), also the semantics of the full parameter is improved.

This is the major change in this release. Actually, this release has being prepared in sync with the release 1.5.6
(just a few days ago) to have this change passed while still keeping our versions scheme.

1.5 series

2014-05-29. Release 1.5.6

• Warn about a future backwards incompatible change in the behavior of xoutil.names.nameof().

2014-05-13. Release 1.5.5

• UserList are now collections in the sense of xoutil.types.is_collection().

• Python 3.4 added to the list of tested Python environments. Notice this does not makes any warrants about
identical behavior of things that were previously backported from Python 3.3.

For instance, the xoutil.collections.ChainMap has been already backported from Python 3.4, so it
will have the same signature and behavior across all supported Python versions.

But other new things in Python 3.4 are not yet backported to xoutil.

• Now xoutil.objects.metaclass() supports the __prepare__ classmethod of metaclasses. This is
fully supported in Python 3.0+ and partially mocked in Python 2.7.

• Backported xoutil.types.MappingProxyType from Python 3.3.

• Backported xoutil.types.SimpleNamespace from Python 3.4.

• Backported xoutil.types.DynamicClassAttribute from Python 3.4

• Added function xoutil.iterators.delete_duplicates().

• Added parameter ignore_underscore to xoutil.string.normalize_slug().

• Added module xoutil.crypto with a function for generating passwords.

• Fixed several bug in xoutil.functools.compose().

• Makes xoutil.fs.path.rtrim() have a default value for the amount of step to traverse.

2014-04-08. Release 1.5.4

• Fix a bug in xoutil.objects.extract_attrs(). It was not raising exceptions when some attribute
was not found and default was not provided.

Also now the function supports paths like xoutil.objects.get_traverser().

• xoutil contains now a copy of the excellent project six exported as xoutil.six (not documented here). Thus
the compatibility module xoutil.compat is now deprecated and will removed in the future.

There are some things that xoutil.compat has that xoutil.six does not. For instance, six does not
include fine grained python version markers. So if your code depends not on Python 3 v Python 2 dichotomy
but on features introduced in Python 3.2 you must use the sys.version_info directly.

Notwithstanding that, xoutil will slowly backport several Python 3.3 standard library features to Python 2.7
so that they are consistently used in any Python up to 2.7 (but 3.0).

2.35. Changelog 123

https://pypi.python.org/pypi/six

xoutil Documentation, Release 1.8.0

2014-04-01. Release 1.5.3

• Now xoutil supports Python 2.7, and 3.1+. Python 3.0 was not tested.

• Added a strict parameter to xoutil.objects.smart_getter().

• New function xoutil.objects.get_traverser().

• The function xoutil.cli.app.main() prefers its default parameter instead of the application’s default
command.

Allow the xoutil.cli.Command to define a command_cli_name to change the name of the command.
See xoutil.cli.tools.command_name().

2014-03-03. Release 1.5.2

• Deprecated function xoutil.objects.get_and_del_key(). Use the dict.pop() directly.

To have consistent naming, renamed get_and_del_attr() and get_and_del_first_of() to
popattr() and pop_first_of(). Old names are left as deprecated aliases.

• Now xoutil.functools.update_wrapper(), xoutil.functools.wraps() and xoutil.
functools.lru_cache() are Python 3.3 backports (or aliases).

• New module xoutil.textwrap.

2014-02-14. Release 1.5.1

• Added functions xoutil.objects.dict_merge(), xoutil.types.are_instances() and
xoutil.types.no_instances().

• Deprecated function xoutil.objects.smart_getattr(). Use xoutil.objects.
get_first_of() instead.

2014-01-24. Release 1.5.0

• Lots of removals. Practically all deprecated since 1.4.0 (or before). Let’s list a few but not all:

– Both xoutil.Unset and xoutil.Ignored are no longer re-exported in xoutil.types.

– Removes module xoutil.decorator.compat, since it only contained the deprecated decorator
xoutil.decorator.compat.metaclass() in favor of xoutil.objects.metaclass().

– Removes nameof and full_nameof from xoutil.objects in favor of xoutil.names.
nameof().

– Removes pow_ alias of xoutil.functools.power().

– Removes the deprecated xoutil.decorator.decorator function. Use xoutil.decorator.
meta.decorator() instead.

– Now get_module_path() is documented and in module xoutil.modules.

• Also we have documented a few more functions, including xoutil.fs.path.rtrim().

• All modules below xoutil.aop are in risk and are being deprecated.

124 Chapter 2. Contents

https://docs.python.org/3.4/library/stdtypes.html#dict.pop

xoutil Documentation, Release 1.8.0

1.4 series

• Adds xoutil.datetime.daterange().

• Adds xoutil.objects.traverse().

• Adds xoutil.fs.makedirs() and xoutil.fs.ensure_filename().

• The fill argument in function xoutil.iterators.slides() now defaults to None. This is con-
sistent with the intended usage of Unset and with the semantics of both xoutil.iterators.
continuously_slides() and xoutil.iterators.first_n().

Unset, as a default value for parameters, is meant to signify the absence of an argument and thus only would be
valid if an absent argument had some kind of effect different from passing the argument.

• Changes xoutil.modules.customize() API to separate options from custom attributes.

• Includes a random parameter to xoutil.uuid.uuid().

• Deprecations and introductions:

– Importing xoutil.Unset and xoutil.Ignored from xoutil.types now issues a warning.

– New style for declaring portable metaclasses in xoutil.objects.metaclass(), so xoutil.
decorator.compat.metaclass() is now deprecated.

– Adds the module xoutil.pprint and function xoutil.pprint.ppformat().

– Adds the first version of package xoutil.cli.

– Adds the filter parameter to functions xoutil.objects.xdir() and xoutil.objects.fdir()
and deprecates attr_filter and value_filter.

– Adds functions xoutil.objects.attrclass(), xoutil.objects.fulldir().

– Adds function xoutil.iterators.continuously_slides().

– Adds package xoutil.threading.

– Adds package xoutil.html and begins the port of xoutil.html.parser from Python 3.3 to
xoutil, so that a common implementation for both Python 2.7 and Python 3.3 is available.

• Bug fixes:

– Fixes some errors with classical AOP weaving of functions in modules that where customized.

– Fixes bugs with xoutil.modules: makes xoutil.modules.modulemethod() to customize the
module, and improves performance.

2013-04-26. Release 1.4.0

• Refactors xoutil.types as explained in types-140-refactor.

• Changes involving xoutil.collections:

– Moves SmartDict and SortedSmartDict from xoutil.data to xoutil.collections. They are still
accessible from xoutil.data.

– Also there is now a xoutil.collections.SmartDictMixin that implements the update behind
all smart dicts in xoutil.

– xoutil.collections.StackedDict in now a SmartDict and thus gains zero-level initialization
data.

• Removals of deprecated, poorly tested, or incomplete features:

2.35. Changelog 125

xoutil Documentation, Release 1.8.0

– Removes deprecated xoutil.decorators. Use xoutil.decorator.

– Removed xoutil.iterators.first(), and xoutil.iterators.get_first().

– Removed xoutil.string.names(), xoutil.string.normalize_to_str() and xoutil.
string.normalize_str_collection().

• Newly deprecated functions:

– Deprecates xoutil.iterators.obtain().

– Deprecates xoutil.iterators.smart_dict() and xoutil.data.smart_copy in favor of xoutil.
objects.smart_copy().

• New features:

– Introduces xoutil.iterators.first_non_null().

– Adds xoutil.objects.copy_class() and updates xoutil.decorator.compat.
metaclass() to use it.

• Fixes a bug with xoutil.deprecation.deprecated() when used with classes: It changed the hierar-
chy and provoked infinite recursion in methods that use super.

1.3 series

• Removes deprecated module xoutil.mdeco.

• xoutil.context.Context now inherit from the newly created stacked dict class xoutil.
collections.StackedDict. Whenever you enter a context a new level of the stacked dict is pushed,
when you leave the context a level is <xoutil.collections.StackedDict.pop>‘:meth:.

This also removes the data attribute execution context used to have, and, therefore, this is an incompatible
change.

• Introduces xoutil.collections.OpenDictMixin and xoutil.collections.StackedDict.

• Fixes a bug in xoutil.decorator.compat.metaclass(): Slots were not properly handed.

• Fixes a bug with the simple xoutil.collections.opendict that allowed to shadow methods (even
__getitem__) thus making the dict unusable.

1.2 series

2013-04-03. Release 1.2.3

• Bug fixes in xoutil.proxy and xoutil.aop.classical.

2013-03-25. Release 1.2.2

• Adds xoutil.bases - Implementations of base 32 and base 64 (numeric) representations.

2013-02-14. Release 1.2.1

• Loads of improvements for Python 3k compatibility: Several modules were fixed or adapted to work on both
Python 2.7 and Python 3.2. They include (but we might have forgotten some):

– xoutil.context.

126 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

– xoutil.aop.basic.

– xoutil.deprecation.

– xoutil.proxy.

• Rescued xoutil.annotate and is going to be supported from now on.

• Introduced module xoutil.subprocess and function xoutil.subprocess.
call_and_check_output().

• Introduced module xoutil.decorator.compat that enables constructions that are interoperable in Python
2 and Python 3.

• Introduced xoutil.iterators.zip(), xoutil.iterators.izip(), xoutil.iterators.
map(), and xoutil.iterators.imap().

2013-01-04. Release 1.2.0

This is the first of the 1.2.0 series. It’s been given a bump in the minor version number because we’ve removed some
deprecated functions and/or modules.

• Several enhancements to xoutil.string to make it work on Python 2.7 and Python 3.2.

Deprecates xoutil.string.normalize_to_str() in favor of the newly created xoutil.string.
force_str() which is Python 3 friendly.

• Backwards incompatible changes in xoutil.objects API. For instance, replaces getattr parameter with
getter in xoutil.objects.xdir() and co.

• Extracts decorator-making facilities from xoutil.decorators into xoutil.mdeco.

• Fixes in xoutil.aop.extended. Added parameters in xoutil.aop.classical.weave().

• Introduces xoutil.iterators.first_n() and deprecates xoutil.iterators.first() and
xoutil.iterators.get_first().

• Removes the zope.interface awareness from xoutil.context since it contained a very hard to catch bug.
Furthermore, this was included to help the implementation of xotl.ql, and it’s no longer used there.

This breaks version control policy since it was not deprecated beforehand, but we feel it’s needed to avoid
spreading this bug.

• Removed long-standing deprecated modules xoutil.default_dict, xoutil.memoize and xoutil.
opendict.

• Fixes bug in xoutil.datetime.strfdelta(). It used to show things like ‘1h 62min’.

• Introduces xoutil.compat.class_type that holds class types for Python 2 or Python 3.

1.1 series

2012-11-01. Release 1.1.4

• Introduces xoutil.compat.iteritems_(), xoutil.compat.iterkeys_() and xoutil.
compat.itervalues_().

• execution context are now aware of zope.interface interfaces; so that you may ask for a context name
implementing a given interface, instead of the name itself.

• Improves xoutil.formatter documentation.

2.35. Changelog 127

xoutil Documentation, Release 1.8.0

• Several fixes to xoutil.aop.classical. It has sudden backwards incompatible changes.

• before and after methods may use the *args, **kwargs idiom to get the passed arguments of the weaved method.

• Several minor fixes: Invalid warning about Unset not in xoutil.types

2012-08-22. Release 1.1.3

• Adds function xoutil.fs.rmdirs() that removes empty dirs.

• Adds functions xoutil.string.safe_join(), xoutil.string.safe_encode(), xoutil.
string.safe_decode(), and xoutil.string.safe_strip(); and the class xoutil.string.
SafeFormatter.

• Adds function xoutil.cpystack.iter_frames().

2012-07-11. Release 1.1.2

• Fixes all copyrights notices and chooses the PSF License for Python 3.2.3 as the license model for xoutil releases.

• All releases from now on will be publicly available at github.

2012-07-06. Release 1.1.1

• Improves deprecation warnings by pointing to the real calling filename

• Removes all internal use of simple_memoize since it’s deprecated. We now use lru_cache().

2012-07-03. Release 1.1.0

• Created the whole documentation Sphinx directory.

• Removed xoutil.future since it was not properly tested.

• Removed xoutil.annotate, since it’s not portable across Python’s VMs.

• Introduced module xoutil.collections

• Deprecated modules xoutil.default_dict, xoutil.opendict in favor of xoutil.
collections.

• Backported xoutil.functools.lru_cache() from Python 3.2.

• Deprecated module xoutil.memoize in favor of xoutil.functools.lru_cache().

1.0 series

2012-06-15. Release 1.0.30

• Introduces a new module :py‘xoutil.proxy‘:mod:.

• Starts working on the sphinx documentation so that we move to 1.1 release we a decent documentation.

2012-06-01. Release 1.0.29.

• Introduces xoutil.iterators.slides and xoutil.aop.basic.contextualized

128 Chapter 2. Contents

https://github.com/merchise-autrement/xoutil/

xoutil Documentation, Release 1.8.0

2012-05-28. Release 1.0.28.

• Fixes normalize path and other details

• Makes validate_attrs to work with mappings as well as objects

• Improves complementors to use classes as a special case of sources

• Simplifies importing of legacy modules

• PEP8

2012-05-22. Release 1.0.27.

• Removes bugs that were not checked (tested) in the previous release.

2012-05-21. Release 1.0.26.

• Changes in AOP classic. Now you have to rename after, before and around methods to _after, _before and
_around.

It is expected that the signature of those methods change in the future.

• Introducing a default argument for xoutil.objects.get_first_of().

• Other minor additions in the code. Refactoring and the like.

2012-04-30. Release 1.0.25.

• Extends the classical AOP approach to modules. Implements an extended version with hooks.

• 1.0.25.1: Makes classical/extended AOP more reliable to TypeError’s in getattr. xoonko, may raise TypeError’s
for TranslatableFields.

2012-04-27. Release 1.0.24.

• Introduces a classical AOP implementation: xoutil.aop.classical.

2012-04-10. Release 1.0.23.

• Introduces decorators: xoutil.decorators.instantiate and xoutil.aop.complementor

2012-04-05. Release 1.0.22

• Allows annotation’s expressions to use defined local variables. Before this release the following code raised an
error:

>>> from xoutil.annotate import annotate
>>> x1 = 1
>>> @annotation('(a: x1)')
... def dummy():
... pass
Traceback (most recent call last):

...
NameError: global name 'x1' is not defined

2.35. Changelog 129

xoutil Documentation, Release 1.8.0

• Fixes decorators to allow args-less decorators

2012-04-03. Release 1.0.21

• Includes a new module xoutil.annotate that provides a way to place Python annotations in forward-
compatible way.

How to contribute to xoutil

Testing

Running tests

xoutil uses pytest and tox for tests. We have a bundled version of pytest in the runtests.py scripts so for running
tests in your environment you don’t really have to install pytest and/or tox.

Given you have installed xoutil as development user-local package with:

$ python setup.py develop --user

You may run the tests with:

$ python runtests.py

Use the -h to show the pytest command line options.

If you have tox installed, then should have also Python 2.7, Python 3.5 and PyPy interpreters1 installed and in your
path to run the tests with tox. Having done so, you may run the tests with:

$ tox

This will run the tests suite in those three environments.

Writing tests

Testing was not introduced in xoutil until late in the project life. So there are many modules that lack a proper test
suite.

To ease the task of writing tests, we chose pytest.

We use both normal tests (“à la pytest”) and doctest. The purpose of doctests is testing the documentation instead of
testing the code, which is the purpose of the former.

Most of our normal tests are currently simple functions with the “test” prefix and are located in the tests/ directory.

Many functions that lacks are, though, tested by our use in other projects. However, it won’t hurt if we write them.

Documentation

Since xoutil is collection of very disparate stuff, the documentation is hardly narrative but is contained in the docstrings
of every “exported” element, except perhaps for module-level documentation in some cases. In these later cases, a
more narrative text is placed in the .rst file that documents the module.

1 See definitive list of needed Python interpreters in tox.ini file.

130 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

Versioning and deprecation

xoutil uses three version components.

The first number refers to language compatibility: xoutil 1.x series are devoted to keeping compatible versions of the
code for both Python 2.7 and Python 3.2+. The jump to 2.x version series will made when xoutil won’t support Python
2.7 any longer.

The second number is library major version indicator. This indicates, that some deprecated stuff are finally removed
and/or new functionality is provided.

The third number is minor release number. Devoted to indicate mostly fixes to existing functionality. Though many
times, some functions are merged and the old ones get a deprecation warning.

Occasionally, a fourth component is added to a release. This usually means a packaging problem, or bug in the
documentation.

Module layout and rules

Many modules in xoutil contains definitions used in xoutil itself. Though we try to logically place every feature into a
rightful, logical module; sometimes this is not possible because it would lead to import dependency cycles.

We are establishing several rules to keep our module layout and dependency quite stable while, at the same time,
allowing developers to use almost every feature in xoutil.

We divide xoutil modules into 4 tiers:

1. Tier 0

This tier groups the modules that must not depend from other modules besides the standard library. These
modules implement some features that are exported through other xoutil modules. These module are never
documented, but their re-exported features are documented elsewhere.

Also the exported module xoutil.eight is this tier.

2. Tier 1

In this tier we have:

• xoutil.decorator.meta. This is to allow the definition of decorators in other modules.

• xoutil.names. This is to allow the use of xoutil.names.namelist for the __all__ attribute
of other modules.

• xoutil.deprecation. It must not depend on any other module besides xoutil.eight. Many
modules in xoutil will use this module at import time to declare deprecated features.

3. Tier 2

Modules in this tier should depend only on features defined in tiers 0 and 1 modules, and that export features
that could be imported at the module level.

This tier only has the xoutil.modules. Both xoutil.modules.modulepropery() and xoutil.
modules.modulemethod() are meant be used at module level definitions, so they are likely to be imported
at module level.

4. Tier 3

The rest of the modules.

In this tier, xoutil.objects and xoutil.types are kings. But in order to allow the import of other
modules the following pair of rules are placed:

2.36. How to contribute to xoutil 131

xoutil Documentation, Release 1.8.0

• At the module level only import from upper tiers.

• Imports from tier 3 are allowed, but only inside the functions that use them.

This entails that you can’t define a function that must be a module level import, like a decorator for other
functions. For that reason, decorators are mostly placed in the xoutil.decorator module.

The tiers above are a “logical suggestion” of how xoutil modules are organized and indicated how they might evolve.

List of contributors

If you’re a contributor and you’re not listed here, we appologize for that omission, and ask you to add yourself to the
list.

• Medardo Rodríguez started this package and wrote most of it.

• Dunia Trujillo has fixed bugs, tested the software and also contributed code.

• Manuel Vázquez has contribute code and reorganize the package for the 1.1.x release series. He has contributed
also to the documentation and docstring in reST format with doctests.

Copyright and Licence

Copyright (c) 2013-2017 Merchise Autrement [~º/~] and Contributors.

Copyright (c) 2012 Medardo Rodríguez.

This software is released under terms similar to the Python Software Foundation (PSF) licence for Python 3.2 as stated
below.

Three modules inside this package are backports from Python 3.2.3’s standard library and the PSF retains the copyright.

License Terms

This LICENSE AGREEMENT is between the Copyright Owner (Owner or Author), and the Individual or Organi-
zation (“Licensee”) accessing and otherwise using xoutil 1.8.0 software in source or binary form and its associated
documentation.

Subject to the terms and conditions of this License Agreement, the Owner hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use xoutil 1.8.0 alone or in any derivative version, provided, however, that Owner’s License
Agreement and Owner’s notice of copyright, i.e., “Copyright (c) 2015 Merchise and Contributors” are retained in
xoutil 1.8.0 alone or in any derivative version prepared by Licensee.

In the event Licensee prepares a derivative work that is based on or incorporates xoutil 1.8.0 or any part thereof, and
wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to include in
any such work a brief summary of the changes made to xoutil 1.8.0.

The Owner is making xoutil 1.8.0 available to Licensee on an “AS IS” basis. THE OWNER MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, THE
OWNER MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF xoutil 1.8.0 WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.

132 Chapter 2. Contents

xoutil Documentation, Release 1.8.0

THE OWNER SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF xoutil 1.8.0 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING, DIS-
TRIBUTING, OR OTHERWISE USING xoutil 1.8.0, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.

Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint venture
between The Owner and Licensee. This License Agreement does not grant permission to use The Owner trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

By copying, installing or otherwise using xoutil 1.8.0, Licensee agrees to be bound by the terms and conditions of this
License Agreement.

2.38. Copyright and Licence 133

xoutil Documentation, Release 1.8.0

134 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• search

135

xoutil Documentation, Release 1.8.0

136 Chapter 3. Indices and tables

Python Module Index

x
xoutil, 3
xoutil.annotate, 7
xoutil.bases, 8
xoutil.bound, 10
xoutil.cli, 17
xoutil.cli.app, 18
xoutil.cli.tools, 18
xoutil.clipping, 19
xoutil.context, 20
xoutil.cpystack, 21
xoutil.crypto, 23
xoutil.decorator, 24
xoutil.decorator.development, 27
xoutil.decorator.meta, 27
xoutil.deprecation, 29
xoutil.dim, 31
xoutil.dim.base, 36
xoutil.dim.currencies, 39
xoutil.dim.meta, 31
xoutil.eight, 40
xoutil.eight.abc, 40
xoutil.eight.exceptions, 46
xoutil.eight.io, 46
xoutil.eight.meta, 40
xoutil.eight.mixins, 42
xoutil.eight.queue, 46
xoutil.eight.string, 44
xoutil.eight.text, 45
xoutil.formatter, 48
xoutil.fp, 48
xoutil.fp.option, 48
xoutil.fp.prove, 51
xoutil.fp.tools, 52
xoutil.fs, 54
xoutil.fs.path, 56
xoutil.future, 57
xoutil.future.codecs, 57
xoutil.future.collections, 58

xoutil.future.datetime, 62
xoutil.future.functools, 65
xoutil.future.inspect, 68
xoutil.future.json, 69
xoutil.future.pprint, 69
xoutil.future.subprocess, 69
xoutil.future.textwrap, 70
xoutil.future.threading, 70
xoutil.future.types, 71
xoutil.html, 72
xoutil.html.entities, 73
xoutil.html.parser, 74
xoutil.infinity, 74
xoutil.iterators, 75
xoutil.keywords, 78
xoutil.logger, 79
xoutil.modules, 79
xoutil.names, 80
xoutil.objects, 82
xoutil.params, 89
xoutil.progress, 93
xoutil.records, 94
xoutil.string, 97
xoutil.symbols, 100
xoutil.validators, 101
xoutil.validators.identifiers, 104
xoutil.values, 104
xoutil.values.ids, 111
xoutil.values.simple, 112
xoutil.web, 115

137

xoutil Documentation, Release 1.8.0

138 Python Module Index

Index

Symbols
__and__() (xoutil.future.datetime.TimeSpan method), 65
__call__() (xoutil.bound.Bounded method), 15
__call__() (xoutil.params.ParamManager method), 92
__call__() (xoutil.params.ParamScheme method), 92
__call__() (xoutil.params.ParamSchemeRow method), 93
__ge__() (xoutil.future.datetime.TimeSpan method), 64
__getitem__() (xoutil.params.ParamScheme method), 93
__init__() (xoutil.params.ParamManager method), 92
__iter__() (xoutil.params.ParamScheme method), 93
__le__() (xoutil.future.datetime.TimeSpan method), 64
__len__() (xoutil.params.ParamScheme method), 93
__mul__() (xoutil.future.datetime.TimeSpan method), 65
signature (xoutil.dim.meta.Dimension attribute), 33
unit (xoutil.dim.meta.Dimension attribute), 33
unitname (xoutil.dim.meta.Dimension attribute), 32

A
A (xoutil.dim.base.ElectricCurrent attribute), 37
Acceleration (class in xoutil.dim.base), 38
accumulated() (in module xoutil.bound), 11
aliases() (in module xoutil.decorator), 25
ampere (xoutil.dim.base.ElectricCurrent attribute), 37
annotate() (in module xoutil.annotate), 7
Area (class in xoutil.dim.base), 38
ascii_coerce() (in module xoutil.values.simple), 112
ascii_set_coerce() (in module xoutil.values.simple), 112
assignment_operator() (in module xoutil.decorator), 25
assure() (in module xoutil.future.datetime), 62
async_call() (in module xoutil.future.threading), 70
AttributeAlias (class in xoutil.decorator), 25

B
B32 (class in xoutil.bases), 9
B64 (class in xoutil.bases), 9
BitPascalSet (class in xoutil.future.collections), 62
boolean (class in xoutil.symbols), 100
boolean_reader() (in module xoutil.records), 95
bound (xoutil.future.datetime.TimeSpan attribute), 64

boundary condition, 10
boundary definition, 10
boundary() (in module xoutil.bound), 13
BoundaryCondition (class in xoutil.bound), 15
Bounded (class in xoutil.bound), 15
bounded function, 10
bounded generator, 10
bytes_coerce() (in module xoutil.values.simple), 112

C
call_and_check_output() (in module

xoutil.future.subprocess), 70
callable_coerce() (in module xoutil.values), 105
candela (xoutil.dim.base.Luminosity attribute), 37
catch() (in module xoutil.eight.exceptions), 47
caught (in module xoutil.eight.exceptions), 47
centimetre (xoutil.dim.base.Length attribute), 36
ChainMap (class in xoutil.future.collections), 61
chars_coerce() (in module xoutil.values.simple), 112
check() (in module xoutil.validators), 101
check_count() (in module xoutil.params), 90
check_default() (in module xoutil.params), 90
check_identifier() (in module xoutil.eight.string), 44
check_no_extra_kwargs() (in module xoutil.validators),

102
check_nullable() (in module xoutil.records), 96
choose() (xoutil.fp.option.Maybe class method), 49
chr_join() (xoutil.values.simple.text method), 114
classproperty (class in xoutil.objects), 84
cli_name() (xoutil.cli.Command class method), 17
cm (xoutil.dim.base.Length attribute), 36
codepoint2name (in module xoutil.html), 73
codepoint2name (in module xoutil.html.entities), 74
coercer (class in xoutil.values), 105
coercer_name() (in module xoutil.values), 105
collection() (in module xoutil.values.simple), 112
combo (class in xoutil.values), 106
Command (class in xoutil.cli), 17
command_name() (in module xoutil.cli.tools), 18
compel() (xoutil.fp.option.Maybe class method), 50

139

xoutil Documentation, Release 1.8.0

compose (class in xoutil.fp.tools), 52
compose (class in xoutil.values), 106
compose() (in module xoutil.future.functools), 66
concatfiles() (in module xoutil.fs), 55
Context (class in xoutil.context), 20
context (in module xoutil.context), 20
continuously_slides() (in module xoutil.iterators), 76
copy_class() (in module xoutil.objects), 84
copy_members() (in module xoutil.modules), 79
count() (in module xoutil.formatter), 48
Counter (class in xoutil.future.collections), 58
covers() (xoutil.future.datetime.TimeSpan method), 65
create() (xoutil.decorator.meta.FunctionMaker class

method), 27
create_int_range_coerce() (in module xoutil.values), 106
create_unique_member_coerce() (in module

xoutil.values), 106
crop() (in module xoutil.clipping), 20
crop_iterator() (in module xoutil.clipping), 20
ctuple (class in xoutil.future.functools), 65
curry() (in module xoutil.future.functools), 67
custom (class in xoutil.values), 107
customize() (in module xoutil.modules), 79
cut_any_prefix() (in module xoutil.string), 97
cut_any_suffix() (in module xoutil.string), 97
cut_prefix() (in module xoutil.string), 97
cut_prefixes() (in module xoutil.string), 97
cut_suffix() (in module xoutil.string), 97
cut_suffixes() (in module xoutil.string), 97

D
date_reader() (in module xoutil.records), 96
DateField (class in xoutil.future.datetime), 63
daterange() (in module xoutil.future.datetime), 63
datetime_reader() (in module xoutil.records), 95
decimal_reader() (in module xoutil.records), 96
decode_coerce() (in module xoutil.values.simple), 113
decorator() (in module xoutil.decorator.meta), 28
dedent() (in module xoutil.future.textwrap), 70
default (xoutil.params.ParamSchemeRow attribute), 90,

93
DEFAULT_MAX_WIDTH (in module xoutil.clipping),

19
DEFAULT_PASS_PHRASE_LEVEL (in module

xoutil.crypto), 24
defaultdict (class in xoutil.future.collections), 58
defaults (xoutil.params.ParamScheme attribute), 90, 93
delete_duplicates() (in module xoutil.iterators), 76
delkwd() (in module xoutil.keywords), 78
deprecated() (in module xoutil.deprecation), 29
dict_merge() (in module xoutil.objects), 87
dict_update_new() (in module xoutil.iterators), 75
DictProxyType (in module xoutil.future.types), 71
Dimension (class in xoutil.dim.meta), 32

DynamicClassAttribute (class in xoutil.future.types), 72

E
ElectricCurrent (class in xoutil.dim.base), 36
ELLIPSIS (in module xoutil.clipping), 19
encode_coerce() (in module xoutil.values.simple), 113
encode_string() (in module xoutil.future.json), 69
enfold() (in module xoutil.fp.prove), 52
ensure_filename() (in module xoutil.fs), 54
entitydefs (in module xoutil.html), 73
entitydefs (in module xoutil.html.entities), 74
error2str() (in module xoutil.string), 97
error_info() (in module xoutil.cpystack), 22
escape() (in module xoutil.html), 73
extract_attrs() (in module xoutil.objects), 86

F
fake_dict_iteritems() (in module xoutil.iterators), 77
false (in module xoutil.fp.option), 50
fdir() (in module xoutil.objects), 85
file_coerce() (in module xoutil.values), 107
first_n() (in module xoutil.iterators), 75
first_non_null() (in module xoutil.iterators), 75
fix_encoding() (in module xoutil.fs.path), 56
fix_method_documentation() (in module xoutil.objects),

88
flat_decorator() (in module xoutil.decorator.meta), 28
flatten() (in module xoutil.iterators), 77
flatten() (xoutil.values.custom class method), 107
flextime (class in xoutil.future.datetime), 63
float_coerce() (in module xoutil.values), 107
float_reader() (in module xoutil.records), 96
Force (class in xoutil.dim.base), 38
force() (in module xoutil.eight.string), 44
force() (in module xoutil.eight.text), 45
force_ascii() (in module xoutil.eight.string), 45
force_collection_coerce() (in module

xoutil.values.simple), 113
force_encoding() (in module xoutil.future.codecs), 57
force_iterable_coerce() (in module xoutil.values.simple),

113
force_module() (in module xoutil.modules), 80
force_sequence_coerce() (in module

xoutil.values.simple), 113
Frequency (class in xoutil.dim.base), 38
from_celcius() (xoutil.dim.base.Temperature class

method), 37
from_date() (xoutil.future.datetime.TimeSpan class

method), 64
from_fahrenheit() (xoutil.dim.base.Temperature class

method), 37
full_args (class in xoutil.fp.tools), 53
full_identifier_coerce() (in module xoutil.values), 107
fulldir() (in module xoutil.objects), 84

140 Index

xoutil Documentation, Release 1.8.0

FunctionMaker (class in xoutil.decorator.meta), 27
future_unbound (xoutil.future.datetime.TimeSpan at-

tribute), 64

G
generate() (xoutil.bound.Bounded method), 15
generate_password() (in module xoutil.crypto), 23
get_and_del_attr() (in module xoutil.objects), 88
get_and_del_first_of() (in module xoutil.objects), 88
get_arg_parser() (xoutil.cli.Help class method), 18
get_attr_value() (in module xoutil.future.inspect), 68
get_branch_subclasses() (in module xoutil.objects), 89
get_cache_token() (in module xoutil.eight.abc), 40
get_first_of() (in module xoutil.objects), 85
get_module_path() (in module xoutil.modules), 80
get_month_first() (in module xoutil.future.datetime), 63
get_month_last() (in module xoutil.future.datetime), 63
get_next_month() (in module xoutil.future.datetime), 63
get_traverser() (in module xoutil.objects), 87
getargvalues() (in module xoutil.cpystack), 21
getattr_static() (in module xoutil.future.inspect), 68
getfullargspec() (in module xoutil.future.inspect), 68
getkwd() (in module xoutil.keywords), 78
grab() (in module xoutil.eight.exceptions), 47
gram (xoutil.dim.base.Mass attribute), 36

H
Help (class in xoutil.cli), 18
helper_class() (in module xoutil.eight.mixins), 43
hour (xoutil.dim.base.Time attribute), 36
HTMLParseError (class in xoutil.html), 73
HTMLParseError (class in xoutil.html.parser), 74
HTMLParser (class in xoutil.html), 73
HTMLParser (class in xoutil.html.parser), 74
hyphen_name() (in module xoutil.cli.tools), 19
Hz (xoutil.dim.base.Frequency attribute), 38

I
I (class in xoutil.dim.base), 37
identifier_coerce() (in module xoutil.values), 107
identifier_from() (in module xoutil.names), 81
identity() (in module xoutil.fp.tools), 53
identity_coerce() (in module xoutil.values), 107
Ignored (in module xoutil), 7
Ignored (in module xoutil.symbols), 100
imap() (in module xoutil.fs), 54
import_deprecated() (in module xoutil.deprecation), 30
indent() (in module xoutil.future.textwrap), 70
InfinityComparable (class in xoutil.infinity), 74
inject_deprecated() (in module xoutil.deprecation), 30
instantiate() (in module xoutil.decorator), 26
int2str() (in module xoutil.bases), 8
int_coerce() (in module xoutil.values), 107
integer_reader() (in module xoutil.records), 96

intersection() (xoutil.future.datetime.TimeSpan method),
65

Invalid (in module xoutil.symbols), 100
is_file_like() (in module xoutil.eight.io), 46
is_full_month() (in module xoutil.future.datetime), 63
is_type() (in module xoutil.validators), 102
is_valid_full_identifier() (in module

xoutil.validators.identifiers), 104
is_valid_identifier() (in module

xoutil.validators.identifiers), 104
is_valid_public_identifier() (in module

xoutil.validators.identifiers), 104
isdisjoint() (xoutil.future.datetime.TimeSpan method), 65
isfullidentifier() (in module xoutil.eight.string), 45
isidentifier() (in module xoutil.eight.string), 45
isnot() (in module xoutil.values.simple), 113
isnull() (in module xoutil.records), 96
issubset() (xoutil.future.datetime.TimeSpan method), 64
issue_9137() (in module xoutil.params), 91
issuperset() (xoutil.future.datetime.TimeSpan method),

65
istype (class in xoutil.values), 107
items() (xoutil.params.ParamScheme method), 90
iter_delete_duplicates() (in module xoutil.iterators), 77
iter_dirs() (in module xoutil.fs), 54
iter_files() (in module xoutil.fs), 54
iter_frames() (in module xoutil.cpystack), 23
iter_stack() (in module xoutil.cpystack), 23
iterable (class in xoutil.values), 108
iterable_coerce() (in module xoutil.values.simple), 113
iterate_over() (in module xoutil.objects), 83

J
J (class in xoutil.dim.base), 37
join() (in module xoutil.fs.path), 56
join() (xoutil.values.simple.text method), 114
JSONEncoder (class in xoutil.future.json), 69
Just (class in xoutil.fp.option), 49

K
K (xoutil.dim.base.Temperature attribute), 37
kelvin (xoutil.dim.base.Temperature attribute), 37
key (xoutil.params.ParamSchemeRow attribute), 90, 93
keys() (xoutil.params.ParamScheme method), 90
keywords_only() (in module xoutil.params), 91
kg (xoutil.dim.base.Mass attribute), 36
kilogram (xoutil.dim.base.Mass attribute), 36
kilogram_per_metre_per_second_squared

(xoutil.dim.base.Presure attribute), 38
kilometre (xoutil.dim.base.Length attribute), 36
km (xoutil.dim.base.Length attribute), 36
kw_args (class in xoutil.fp.tools), 53
kwd_deleter() (in module xoutil.keywords), 78
kwd_getter() (in module xoutil.keywords), 78

Index 141

xoutil Documentation, Release 1.8.0

kwd_setter() (in module xoutil.keywords), 78

L
L (class in xoutil.dim.base), 37
Length (class in xoutil.dim.base), 36
level (xoutil.future.collections.StackedDict attribute), 61
listdir() (in module xoutil.fs), 54
logic_collection_coerce() (in module

xoutil.values.simple), 113
logic_iterable_coerce() (in module xoutil.values.simple),

113
logic_sequence_coerce() (in module

xoutil.values.simple), 113
logical (class in xoutil.values), 108
lower_ascii_coerce() (in module xoutil.values.simple),

113
lower_ascii_set_coerce() (in module

xoutil.values.simple), 113
Luminosity (class in xoutil.dim.base), 37
lwraps (class in xoutil.future.functools), 66

M
M (class in xoutil.dim.base), 37
m (xoutil.dim.base.Length attribute), 36
main() (in module xoutil.cli.app), 18
make() (xoutil.decorator.meta.FunctionMaker method),

27
make_a10z() (in module xoutil.string), 97
makedirs() (in module xoutil.fs), 55
mapping (class in xoutil.values), 108
MappingProxyType (class in xoutil.future.types), 71
maps (xoutil.future.collections.ChainMap attribute), 61
Mass (class in xoutil.dim.base), 36
MAX_ARG_COUNT (in module xoutil.params), 89
MAX_PASSWORD_SIZE (in module xoutil.crypto), 24
Maybe (class in xoutil.fp.option), 49
memoized_instancemethod (class in xoutil.decorator), 26
memoized_property (class in xoutil.decorator), 26
metaclass (class in xoutil.objects), 88
metaclass() (in module xoutil.eight.meta), 40
MetaCoercer (class in xoutil.values), 104
MetaSymbol (class in xoutil.symbols), 100
metre (xoutil.dim.base.Length attribute), 36
metre_cubic (xoutil.dim.base.Volume attribute), 38
metre_kilogram_per_second_squared

(xoutil.dim.base.Force attribute), 38
metre_per_second (xoutil.dim.base.Velocity attribute), 38
metre_per_second_squared

(xoutil.dim.base.Acceleration attribute),
38

metre_squared (xoutil.dim.base.Area attribute), 38
millimetre (xoutil.dim.base.Length attribute), 36
millisecond (xoutil.dim.base.Time attribute), 36
MIN_WIDTH (in module xoutil.clipping), 19

minute (xoutil.dim.base.Time attribute), 36
mixin() (in module xoutil.eight.mixins), 44
mm (xoutil.dim.base.Length attribute), 36
modulemethod() (in module xoutil.modules), 80
moduleproperty() (in module xoutil.modules), 80
mol (xoutil.dim.base.Substance attribute), 37
mole (xoutil.dim.base.Substance attribute), 37
ms (xoutil.dim.base.Time attribute), 36
multi_getter() (in module xoutil.objects), 88

N
N (class in xoutil.dim.base), 37
N (xoutil.dim.base.Force attribute), 38
name2codepoint (in module xoutil.html), 73
name2codepoint (in module xoutil.html.entities), 74
name_coerce() (in module xoutil.values.simple), 113
nameof() (in module xoutil.names), 80
nameof() (xoutil.symbols.MetaSymbol method), 100
namer() (in module xoutil.decorator), 25
names_coerce() (in module xoutil.values), 109
nanometre (xoutil.dim.base.Length attribute), 36
nanosecond (xoutil.dim.base.Time attribute), 36
new() (xoutil.dim.meta.Dimension class method), 33
new_child() (xoutil.future.collections.ChainMap

method), 62
new_class() (in module xoutil.future.types), 71
Newton (xoutil.dim.base.Force attribute), 38
nm (xoutil.dim.base.Length attribute), 36
none (in module xoutil.fp.option), 50
normalize_path() (in module xoutil.fs.path), 56
normalize_slug() (in module xoutil.string), 97
not_false() (in module xoutil.values.simple), 114
not_false_coercer() (in module xoutil.values.simple), 114
ns (xoutil.dim.base.Time attribute), 36
number_coerce() (in module xoutil.values), 109

O
O (class in xoutil.dim.base), 37
object_finder() (in module xoutil.cpystack), 23
object_info_finder() (in module xoutil.cpystack), 22
ok() (in module xoutil.validators), 102
opendict (class in xoutil.future.collections), 58
OpenDictMixin (class in xoutil.future.collections), 59
OrderedDict (class in xoutil.future.collections), 59
OrderedSmartDict (class in xoutil.future.collections), 60
org_kwd() (in module xoutil.keywords), 78
overlaps() (xoutil.future.datetime.TimeSpan method), 65

P
Pa (xoutil.dim.base.Presure attribute), 38
ParamManager (class in xoutil.params), 89, 92
ParamScheme (class in xoutil.params), 89, 92
ParamSchemeRow (class in xoutil.params), 90, 93
parents (xoutil.future.collections.ChainMap attribute), 62

142 Index

xoutil Documentation, Release 1.8.0

pargs (class in xoutil.values), 109
parse() (xoutil.symbols.MetaSymbol method), 100
pascal (xoutil.dim.base.Presure attribute), 38
PascalSet (class in xoutil.future.collections), 62
PASS_PHRASE_LEVEL_BASIC (in module

xoutil.crypto), 24
PASS_PHRASE_LEVEL_MAPPED (in module

xoutil.crypto), 24
PASS_PHRASE_LEVEL_MAPPED_DATED (in mod-

ule xoutil.crypto), 24
PASS_PHRASE_LEVEL_MAPPED_MIXED (in mod-

ule xoutil.crypto), 24
PASS_PHRASE_LEVEL_STRICT (in module

xoutil.crypto), 24
past_unbound (xoutil.future.datetime.TimeSpan at-

tribute), 64
peek() (xoutil.future.collections.StackedDict method), 61
pop() (xoutil.future.collections.StackedDict method), 61
pop_first_of() (in module xoutil.objects), 87
pop_keyword_arg() (in module xoutil.params), 91
pop_level() (xoutil.future.collections.StackedDict

method), 61
popattr() (in module xoutil.objects), 83
pos_args (class in xoutil.fp.tools), 53
positive_int_coerce() (in module xoutil.values), 110
power() (in module xoutil.future.functools), 66
ppformat() (in module xoutil.future.pprint), 69
pred() (in module xoutil.bound), 11
predicate() (in module xoutil.validators), 103
predicative() (in module xoutil.fp.prove), 52
prepare_class() (in module xoutil.future.types), 71
Presure (class in xoutil.dim.base), 38
program_name() (in module xoutil.cli.tools), 19
Progress (class in xoutil.progress), 93
push() (xoutil.future.collections.StackedDict method), 61
push_level() (xoutil.future.collections.StackedDict

method), 61
Python Enhancement Proposals

PEP 257, 70
PEP 3107, 7
PEP 3115, 41
PEP 342, 10

Q
Quantity (class in xoutil.dim.meta), 35

R
record (class in xoutil.records), 94
remainder() (xoutil.params.ParamManager method), 89,

92
rmdirs() (in module xoutil.fs), 55
rtrim() (in module xoutil.fs.path), 56
run() (xoutil.cli.Command method), 17

S
s (xoutil.dim.base.Time attribute), 36
safe (class in xoutil.values), 110
safe_decode() (in module xoutil.future.codecs), 57
safe_encode() (in module xoutil.future.codecs), 57
safe_isfullidentifier() (in module xoutil.eight.string), 45
safe_isidentifier() (in module xoutil.eight.string), 45
safe_join() (in module xoutil.eight.string), 45
safe_join() (in module xoutil.eight.text), 46
Scalar (class in xoutil.dim.meta), 35
SCALAR (in module xoutil.dim.meta), 35
second (xoutil.dim.base.Time attribute), 36
set_default_command() (xoutil.cli.Command class

method), 17
setdefaultattr() (in module xoutil.objects), 83
setkwd() (in module xoutil.keywords), 78
settle() (in module xoutil.decorator), 25
shorten_module_filename() (in module xoutil.fs.path), 56
shorten_user() (in module xoutil.fs.path), 56
Signature (class in xoutil.dim.meta), 34
SimpleNamespace (class in xoutil.future.types), 71
simplify() (xoutil.dim.meta.Signature static method), 35
single() (in module xoutil.params), 92
sized_coerce() (in module xoutil.values), 110
slides() (in module xoutil.iterators), 75
slugify() (in module xoutil.string), 98
slugify() (in module xoutil.web), 115
small() (in module xoutil.clipping), 20
smart_copy() (in module xoutil.objects), 85
smart_getattr() (in module xoutil.objects), 87
smart_getter() (in module xoutil.objects), 83
smart_getter_and_deleter() (in module xoutil.objects), 83
SmartDictMixin (class in xoutil.future.collections), 60
some (class in xoutil.values), 110
StackedDict (class in xoutil.future.collections), 60
stat() (in module xoutil.fs), 55
str2int() (in module xoutil.bases), 9
str_coerce() (in module xoutil.values.simple), 114
str_uuid() (in module xoutil.values.ids), 111
strfdelta() (in module xoutil.future.datetime), 62
strftime() (in module xoutil.future.datetime), 63
strict_string_coerce() (in module xoutil.values.simple),

114
Substance (class in xoutil.dim.base), 37
suffix_kwd() (in module xoutil.keywords), 78
symbol (class in xoutil.symbols), 101
sync_call() (in module xoutil.future.threading), 71

T
T (class in xoutil.dim.base), 37
take() (in module xoutil.fp.option), 50
Temperature (class in xoutil.dim.base), 37
Template (class in xoutil.formatter), 48
text (class in xoutil.values.simple), 114

Index 143

xoutil Documentation, Release 1.8.0

This (in module xoutil.symbols), 100
throw() (in module xoutil.eight.exceptions), 47
Time (class in xoutil.dim.base), 36
timed() (in module xoutil.bound), 11
times() (in module xoutil.bound), 11
TimeSpan (class in xoutil.future.datetime), 63
traceof() (in module xoutil.eight.exceptions), 47
track_value() (in module xoutil.cpystack), 23
traverse() (in module xoutil.objects), 86
triumph() (xoutil.fp.option.Maybe class method), 50
true (in module xoutil.fp.option), 50
type_coerce() (in module xoutil.values), 111
type_name() (in module xoutil.future.inspect), 68
typecast (class in xoutil.values), 111
types_tuple_coerce() (in module xoutil.values), 111

U
unbound (xoutil.future.datetime.TimeSpan attribute), 64
unbounded function, 10
unbounded generator, 10
Undefined (in module xoutil), 7
Undefined (in module xoutil.symbols), 100
ungroup() (in module xoutil.iterators), 76
unicode_coerce() (in module xoutil.values.simple), 114
UNIT (in module xoutil.dim.meta), 35
unit_per_second (xoutil.dim.base.Frequency attribute),

38
Unset (in module xoutil), 7
Unset (in module xoutil.symbols), 100
unstable() (in module xoutil.decorator.development), 27
until() (in module xoutil.bound), 12
until_errors() (in module xoutil.bound), 12
update() (xoutil.decorator.meta.FunctionMaker method),

27
update_wrapper() (in module xoutil.future.functools), 67

V
valid (xoutil.future.datetime.TimeSpan attribute), 64
validate_attrs() (in module xoutil.objects), 82
Velocity (class in xoutil.dim.base), 38
void_coerce() (in module xoutil.values), 111
Volume (class in xoutil.dim.base), 38
vouch() (in module xoutil.fp.prove), 52

W
walk_up() (in module xoutil.fs), 55
whenall() (in module xoutil.bound), 13
whenany() (in module xoutil.bound), 12
with_cause() (in module xoutil.eight.exceptions), 47
with_traceback() (in module xoutil.eight.exceptions), 47
Wrong (class in xoutil.fp.option), 50

X
xdir() (in module xoutil.objects), 85

xoutil (module), 1
xoutil.annotate (module), 7
xoutil.bases (module), 8
xoutil.bound (module), 10
xoutil.cli (module), 17
xoutil.cli.app (module), 18
xoutil.cli.tools (module), 18
xoutil.clipping (module), 19
xoutil.context (module), 20
xoutil.cpystack (module), 21
xoutil.crypto (module), 23
xoutil.decorator (module), 24
xoutil.decorator.development (module), 27
xoutil.decorator.meta (module), 27
xoutil.deprecation (module), 29
xoutil.dim (module), 31
xoutil.dim.base (module), 36
xoutil.dim.currencies (module), 39
xoutil.dim.meta (module), 31
xoutil.eight (module), 40
xoutil.eight.abc (module), 40
xoutil.eight.exceptions (module), 46
xoutil.eight.io (module), 46
xoutil.eight.meta (module), 40
xoutil.eight.mixins (module), 42
xoutil.eight.queue (module), 46
xoutil.eight.string (module), 44
xoutil.eight.text (module), 45
xoutil.formatter (module), 48
xoutil.fp (module), 48
xoutil.fp.option (module), 48
xoutil.fp.prove (module), 51
xoutil.fp.tools (module), 52
xoutil.fs (module), 54
xoutil.fs.path (module), 56
xoutil.future (module), 57
xoutil.future.codecs (module), 57
xoutil.future.collections (module), 58
xoutil.future.datetime (module), 62
xoutil.future.functools (module), 65
xoutil.future.inspect (module), 68
xoutil.future.json (module), 69
xoutil.future.pprint (module), 69
xoutil.future.subprocess (module), 69
xoutil.future.textwrap (module), 70
xoutil.future.threading (module), 70
xoutil.future.types (module), 71
xoutil.html (module), 72
xoutil.html.entities (module), 73
xoutil.html.parser (module), 74
xoutil.infinity (module), 74
xoutil.iterators (module), 75
xoutil.iterators.map() (in module xoutil.iterators), 78
xoutil.iterators.zip() (in module xoutil.iterators), 78

144 Index

xoutil Documentation, Release 1.8.0

xoutil.iterators.zip_longest() (in module xoutil.iterators),
78

xoutil.keywords (module), 78
xoutil.logger (module), 79
xoutil.modules (module), 79
xoutil.names (module), 80
xoutil.objects (module), 82
xoutil.params (module), 89
xoutil.progress (module), 93
xoutil.records (module), 94
xoutil.string (module), 97
xoutil.symbols (module), 100
xoutil.validators (module), 101
xoutil.validators.identifiers (module), 104
xoutil.values (module), 104
xoutil.values.ids (module), 111
xoutil.values.simple (module), 112
xoutil.web (module), 115

Index 145

	What's new in 1.8.0
	Contents
	Indices and tables
	Python Module Index

